Имеют ли тромбоциты ядро

Имеют ли тромбоциты ядро

  • 26-07-2019
  • 0 Просмотров
  • 0 комментариев
  • 0 Рейтинг

Мегакариобласты

Мегакариобласты – родоначальные клетки мегакариоцитарного ряда. Размер – около 20 мкм. Ядро круглое, с мелкосетчатой структурой хроматина, иногда сплетенного в виде клубка. Структура ядра грубее, чем у недифференцированного бласта, нередко видны ядрышки. Цитоплазма базофильная, беззернистая, имеет вид узкого ободка. Часто контуры клеток неровные, с отростками цитоплазмы и образованием "голубых" пластинок.

Микрофотографии мегакариобластов:

Промегакариоциты

Промегакариоциты – клетки больших размеров, чем мегакариобласты. Ядро крупнее, чем у мегакариобласта, имеет несколько более грубую структуру и тенденцию к полиморфизму (бухтообразные вдавления, линии шнурования ядра и пр.). Цитоплазма базофильная, беззернистая, в виде узкого ободка, иногда с отростками и образованием "голубых" пластинок.

Микрофотографии промегакариоцитов:

Мегакариоциты базофильные

Мегакариоциты базофильные – клетки больших размеров, чем предыдущие, в два раза больше мегакариобластов. Ядро может быть бухтообразным с нежной структурой базихроматина или более зрелым, многолопастным. Цитоплазма голубого цвета, иногда с азурофильной зернистостью. имеет вид неширокого ободка.

Микрофотографии базофильных мегакариоцитов:

Мегакариоциты полихроматофильные

Мегакариоциты полихроматофильные – гигантские клетки диаметром 40 – 50 мкм. Ядро многолопастное, иногда свернуто в виде клубка или состоит из отдельных шаров. Структура ядра грубая, нередко наблюдается его пикноз. Ядерно-цитоплазматическое соотношение на этой стадии уже изменено в сторону цитоплазмы. Последняя имеет широкую зону, окрашена в светло-голубой цвет, содержит обильную зернистость различных оттенков (красноватая, светло-фиолетовая, фиолетовая). Зернистость в цитоплазме не всегда расположена равномерно. В отдельных участках клетки, ближе к периферии, можно наблюдать скопления мелких зернышек, окруженные ободком гиалиновой голубой цитоплазмы. Иногда цитоплазма вся заполнена такими скоплениями, напоминающими по величине и структуре сформированные кровяные пластинки. Наконец, в клетках можно наблюдать отделение от цитоплазмы готовых пластинок.

Микрофотографии полихроматофильных мегакариоцитов:

Мегакариоциты оксифильные

Мегакариоциты оксифильные – клетки диаметром 60 – 70 мкм. Ядро многолопастное, иногда состоящее из фрагментов. Нередко встречаются многоядерные клетки. Ядро окрашено в темно-фиолетовый цвет, резко пикнотично. Цитоплазма образует большую зону, имеет розовый оттенок и содержит обильную красноватую зернистость. Некоторые клетки занимают почти все поле зрения микроскопа.

Микрофотографии оксифильных мегакариоцитов:

Инволютивные формы мегакариоцитов

Инволютивные формы мегакариоцитов – образуются в результате вызревания мегакариоцитов с постепенным отторжением вещества цитоплазмы и ядра в процессе образования пластинок. Эти формы имеют полисегментированное разреженное ядро и большую зону бледно-розовой цитоплазмы с пылевидной, едва различимой зернистостью.

Фотографии инволютивных форм мегакариоцитов:

Голоядерные клетки

Голоядерные клетки – могут возникать из инволютивных форм мегакариоцитов или в результате бурного распада мегакариоцитов на пластинки. В этом случае свободные ядра имеют остатки цитоплазмы. Встречающиеся в периферической крови при ряде патологий ядра мегакариоцитов обычно называют тромбобластами.

Микрофотографии голоядерных клеток:

Дегенеративные изменения

Дегенеративные изменения могут наблюдаться во всех формах и проявляются в виде резкой сегментации ядра, сморщивания его, вакуолизации цитоплазмы.

Вакуолизация цитоплазмы мегакариоцитов:

Мегакариоцитограмма

Иногда при исследовании костного мозга составляют мегакариоцитограмму. При этом дифференцируют не менее 50 – 100 клеток мегакариоцитарного ростка. Часто приходится сосчитывать их в нескольких мазках пунктата костного мозга. Для более быстрого нахождения клеток мазок просматривают по краям и в конце препарата под малым увеличением. Обнаруженную клетку дифференцируют с иммерсионным объективом. Согласно Г. И. Алексееву, в норме клетки в мегакариоцитограмме представлены следующим образом:

  • мегакариобласты и промегакариоциты – 2 – 6%,
  • мегакариоциты базофильные – 4 – 8%,
  • мегакариоциты полихроматофильные – 42,6 – 65%,
  • мегакариоциты оксифильные – 8,3 – 19%,
  • инволютивные формы – 3,6 – 9,2%,
  • голоядерные клетки – 6 – 13,2%,
  • дегенеративные формы – 3,5 – 7,8%.

Сдвиг мегакриоцитограммы влево с увеличением молодых форм может наблюдаться при различных состояниях, характеризующихся пролиферацией мегакариоцитов, в частности при тромбоцитопенической пурпуре (болезнь Верльгофа), постгеморрагической анемии, хроническом миелолейкозе, циррозе печени с гиперспленизмом и др. При этом образование пластинок наблюдается не только у зрелых форм, но и на ранних стадиях мегакариоцитопоэза. Резкая диссоциация в развитии ядра и цитоплазмы мегакариоцитов с плазматизацией цитоплазмы наблюдается при злокачественных новообразованиях, септических состояниях, абсцессе легкого. При этом дегенеративные изменения наблюдаются и в тромбоцитах (старые формы, вакуолизация и пикноз грануломера и др.).

Читайте также:  Тромб на шее фото

По морфологическим особенностям мегакариоцитов можно косвенно судить и об их функциональном состоянии. При этом мегакариоциты делят на две группы: пластинкосодержащие и пластинкообразующие.

Пластинкосодержащие мегакариоциты

Пластинкосодержащие мегакариоциты содержат в цитоплазме крупную зернистость, по величине и структуре напоминающую кровяные пластинки. Эти клетки можно считать функционально активными, подготовленными для пластинкообразования. У здоровых людей количество пластинкосодержащих форм составляет примерно 41 – 58%.

Пластинкообразующие мегакариоциты

Пластинкообразующие мегакариоциты – клетки, в которых уже произошло отшнуровывание кровяных пластинок ("шнурующие" мегакариоциты). В цитоплазме и вне клетки лежат свободные тромбоциты. У здоровых людей количество пластинкообразующих форм мегакариоцитов составляет 8 – 20%.

Увеличение количества "шнурующих" мегакариоцитов наблюдается при эритремии, геморрагической тромбоцитемии, регенеративной анемии, у больных после спленэктомии и при других заболеваниях, сопровождающихся тромбоцитозом. Уменьшение количества таких мегакариоцитов свидетельствует об угнетении пластинкообразующей функции мегакариоцитов и наблюдается при тромбоцитопенической пурпуре и некоторых симптоматических тромбоцитопениях (цирроз печени, тиреотоксикоз и др.).

Фотографии пластинкообразующих мегакариоцитов:

Тромбоциты

Тромбоциты – лишенные ядра клетки, образовавшиеся из цитоплазмы и оболочек мегакариоцитов. Нормальные зрелые пластинки имеют размеры от 1 до 4 мкм, четкие границы, округлую или овальную форму, сиреневый гиаломер и центрально расположенный грануломер, состоящий из 5 – 20 азурофильных гранул (зерен). Другие виды пластинок: юные (с голубоватым гиаломером и скудной зернистостью), старые (с неровными очертаниями и плотным грануломером, иногда занимающим весь тромбоцит), формы раздражения (мелкие или в виде гигантских хвостатых тромбоцитов и цепочек); в норме составляют лишь небольшой процент и появляются в большом количестве при патологии.

М. И. Кореновская предлагает следующую тромбоцитарную формулу:

  • юных – 0 – 0,8%,
  • зрелых – 90,3 – 95,1%,
  • старых – 2,2 – 5,6%.
  • дегенеративных – 0 – 0,2%,
  • форм раздражения – 0,8 – 2,3%.

У детей увеличено количество юных форм.

Число юных тромбоцитов возрастает после кровопотери и при ремиссии тромбоцитопенической пурпуры, например, после применения преднизолона, при гемолитическом кризе, после переливаний крови с осложнениями в виде внутритканевого гемолиза, а также при лейкозе.

Патологические формы раздражения в большом количестве появляются после обильных кровотечений.

Увеличение процента старых и дегенеративных форм тромбоцитов наблюдается при наследственных и вторичных тромбопатиях (бензольная интоксикация, цирроз печени, длительное воздействие малых доз ионизирующей радиации и т.п.).

Особенности морфологии и физиологии тромбоцитов были детально описаны Биццоцеро в 1882 г. Тромбоциты или кровяные пластинки, так же как и эритроциты, – уникальный пример «предельной» специализации клетки, функционирующей в отсутствие ядра. Ядерные тромбоциты, так же как и ядерные эритроциты, возникают у рыб и в филогенетическом развитии достигают «безъядерного» состояния у млекопитающих. Имея в своем составе более 10 факторов свертывания крови и адсорбируя на своей поверхности ряд плазменных факторов свертывания, тромбоциты оказываются необходимыми на всех этапах остановки кровотечения. Они принимают участие в реакциях сложного и многоступенчатого процесса свертывания крови, образования пластинчатого тромба и ретракции кровяного сгустка.

Образование тромбоцитов путем отшнуровки от гигантских клеток костного мозга – мегакариоцитов – впервые наблюдал Wright в 1906 г. Позднее Thiery и Bessis сняли микрофильм о мегакариоцитах, переживающих, in vitro, и убедительно показали, что от цитоплазматических отростков этих клеток отпочковываются кровяные пластинки. Эта теория происхождения тромбоцитов подтверждается общностью антигенов, сходством ультраструктуры, биохимических и цитохимических особенностей мегакариоцитов и тромбоцитов.

Тромбоциты, как и все другие клеточные элементы крови, ведут свое начало от стволовой клетки костного мозга. Показано существование унипотентной клетки-предшественницы, лимфоцитоподобной, тромбопоэтинчувствительной. По скорости седиментации эти образующие мегакариоцитарные колонии клетки не больше малого лимфоцита, в костном мозге мыши содержатся в количестве 2-15 на 105, т. е. их примерно в 3 раза меньше, чем других колониеобразующих клеток. Это согласуется с меньшей частотой мегакариоцитов в популяции костномозговых клеток.

Следующей клеточной стадией Ebbe, изучавший кинетику мегакариоцитопоэза у крыс, полагает непосредственного предшественника мегакариоцитов, не определяемого морфологически, способного к синтезу ДНК без митозов, с генерационным временем примерно 16 ч. Нужно как минимум два генерационных цикла, считая за цикл время с начала одного S-периода до начала другого, чтобы клетка стала морфологически дифференцируемой формой мегакариоцита с плоидностью 8n. Внутри популяции мегакариоцитов деления не происходит. Это было доказано Ebbe в опытах с меченым тимидином. Количество меченых мегакариоцитов нарастало до 100%, при этом разведении метки не наблюдалось.

Читайте также:  Для чего сдают кровь на пса

Odell схематически представил нормальный мегакариоцитопоэз из пяти стадий клеточной дифференцировки: коммитированная тромбопоэтинчувствительная клетка, нераспознаваемый морфологически предшественник мегакариоцитов, далее 2 незрелых мегакариоцита и последний – зрелый мегакариоцит.

Среди популяции мегакариоцитов Ebbe выделил 3 группы клеток разной степени зрелости, соотносящиеся между собой как 1:1,34:3,02. Отличие этого деления от ранее принятого в русской школе на мегакариобласты, промегакариоциты и мегакариоциты состоит в том, что клетки плоидностью менее 8п относят не к популяции мегакариоцитов, а к популяции клеток-предшественников II-III класса.

Мегакариобласт – самая незрелая форма, наименьшая по размерам (диаметр – 25-35 мкм) и плоидности, с высоким ядерно-цитоплазматическим отношением, нежной структурой ядра и базофильной цитоплазмой без зернистости. Иногда наблюдаются отростки цитоплазмы, которые дают начало так называемым голубым пластинкам

Промегакариоцит – отличается большими размерами (диаметр 30-50 мкм) и плоидностью, крупным интенсивно окрашенным ядром, иногда зазубренным с тенденцией к полиморфизму. Структура ядра более грубая. В базофильной цитоплазме наблюдается азурофильная зернистость и возможна отшнуровка цитоплазмы.

Мегакариоцит – гигантская клетка костного мозга, диаметр ее достигает 50-80 мкм. Ядро отличается величиной (плоидность 16п и 32п), плотным хроматином и причудливой многодольчатой формой. В цитоплазме мегакариоцита выявляются скопления азурофильной зернистости, чаще наблюдается отшнуровка пластинок. При
замедленной киносъемке мегакариоцитов в культуре было показано, как ядро мегакариоцита становится пикнотичным, цитоплазма выпячивается в виде псевдоподий. Затем мегакариоцит превращается в клетку, состоящую из ядра, окруженного новообразованными пластинками. В дальнейшем эта клетка распадается на отдельные ядерные фрагменты.

Весь процесс превращения мегакариобласта в мегакариоцит, по Ebbe, занимает 43-45 ч. В среднем из 1 мегакариоцита образуется 3000-4000 тромбоцитов.

Таким образом, особенностью кинетики мегакариоцитов является отсутствие деления во всем ряду, и популяция, следовательно, увеличивается только за счет поступления морфологически нераспознаваемых клеток-предшественников костного мозга.

Odell считает, что созревание цитоплазмы возможно только при остановке синтеза ДНК. Причиной окончательного прекращения синтеза ДНК может быть накопление специфического белка – тромбастенина, по аналогии с эритроидным рядом, в котором накопление гемоглобина останавливает репликацию ДНК

Изучение мегакариоцитов костного мозга при помощи трансмиссионного микроскопа показало, что по мере созревания в цитоплазме развивается пластинчатый комплекс, эргастоплазма, образуются внутренняя, средняя и маргинальные зоны в цитоплазме. Более всего дифференцировка заметна по развитию демаркационной мембранной системы и грануляции, которые в большом объеме появляются при плоидизации.

В зрелом мегакариоците на обширной площади цитоплазмы выявляется демаркационная мембранная система, которая образует ограничительные мембраны будущих тромбоцитов. Сходство демаркационных мембран и поверхностных мембран тромбоцитов по характеру реакций на кислые глюкозаминогликаны показано при ультрацитохимическом исследовании. По мере созревания мегакариоцитов : демаркационные мембраны становятся более отчетливыми.

При изучении в сканирующем электронном микроскопе получены снимки мегакариоцитов, отшнуровывающих тромбоциты.

Тромбоциты могут отшнуровываться от мегакариоцитов с различной плоидностью ядра, следовательно, функциональное созревание цитоплазмы не имеет прямой зависимости от уровня плоидности. Однако степень функциональной активности мегакариоцитов зависит от полиморфизма ядра и числа ядерных долей.

Тромбоциты формируются в цитоплазме мегакариоцитов , отшнуровываются в синусы костного мозга, откуда поступают в циркуляцию. В процессе осуществления своих функций тромбоциты гибнут. Срок жизни тромбоцитов наименьший по сравнению с другими клетками крови .

Н. А. Торубарова и Е. Н. Мосягина подробно разбирают вопросы, почему метод аутотрансфузии меченных in vitro тромбоцитов достаточен при определении максимальной продолжительности жизни пластинок и оказывается неудачным при определении средней продолжительности их жизни. Дело отчасти в том, что радиоактивность в периферической крови выявляется не сразу после аутотрансфузии и нарастает в течение 20-30 ч, возможно вследствие прилипания введенных тромбоцитов к эндотелию сосудов, и достигает не более 50-60% ожидаемого уровня скорее всего из-за случайного разрушения, тромбоцитов к этому моменту. Средняя, продолжительность жизни тромбоцитов, определенная этим методом, оказывается равной 4-6 дням. Максимальная длительность жизни тромбоцитов определяется как интервал времени от момента переливания до полного исчезновения метки и составляет 8-11 суток.

Е. Н. Мосягина считает, что более реальна средняя продолжительность жизни тромбоцитов, определенная по активности кислой фосфатазы. Активность фермента высока в новообразованных тромбоцитах, поступающих из костного мозга в периферическую кровь, и быстро исчезает с возрастом пластинок. Средняя продолжительность жизни тромбоцитов, определенная при подсчете доли фосфатазоположительных тромбоцитов до и после часовой инкубации in vitro, составила 2-3 суток.

Читайте также:  Свечи натальсид при лактации

Около 35-40% циркулирующих тромбоцитов ежедневно разрушается . При этом ежесуточное разрушение вследствие старения составляет только 5% (88). Около 30% тромбоцитов гибнет случайно в непрерывно протекающем в организме процессе свертывания. Последнее подтверждается увеличением средней длительности жизни тромбоцитов при введении антикоагулянтов.

Предполагается существование нескольких механизмов регуляции тромбоцитопоэза. Скорость образования тромбоцитов, по-видимому, регулируется путем обратной связи с пулом предшественников. Пример этому: искусственное повышение числа тромбоцитов в периферической крови после переливания свежих тромбоцитов угнетает тромбоцитопоэз, а кровопускание стимулирует вызревание тромбоцитов. При искусственном уменьшении числа тромбоцитов увеличиваются размеры, плоидность, число и степень созревания и соответственно продуктивность мегакариоцитов. Если в норме цитоплазмо-ядерное отношение в мегакариоците равно в среднем 3,8, то при стимуляции продукции (искусственная тромбоцитопения) оно становится значительно выше – равным 8,4.

Присутствие гуморальных стимуляторов, тромбопоэтинов, доказано в различных экспериментах и при изучении тромбоцитопенических состояний. Тромбопоэтины обнаружены в крови после спленэктомии, при асептическом воспалении, у больных эритремией, эритромиелозом, острой тромбоцитопенической пурпурой, сифилисом.

Возможно существование нескольких стимуляторов, действующих на разных этапах тромбоцитопоэза. Например, одного, активирующего созревание мегакариобластов, и другого, усиливающего процесс отшнуровки тромбоцитов.

Установлено также существование гуморального антитромбопоэтина – ингибитора тромбоцитопоэза. Как стимуляторы, так и ингибиторы пока не выделены в чистом виде, не известны их химическая природа, механизм действия и место выработки в организме.

Тромбоциты, или кровяные пластинки, образуются из гигантских клеток красного костного мозга — мегакариоцитов. В костном мозге мегакариоциты плотно прижаты к промежуткам между фибробластами и эндотелиальными клетками, через которые их цитоплазма выдается наружу и служит материалом для образования тромбоцитов. В кровотоке тромбоциты имеют круглую или слегка овальную форму, диаметр их не превышает 2—3 мкм. У тромбоцита нет ядра, но имеется большое количество гранул (до 200) различного строения. При соприкосновении с поверхностью, отличающейся по своим свойствам от эндотелия, тромбоцит активируется, распласты­вается и у него появляется до 10 зазубрин и отростков, которые могут в 5—10 раз превышать диаметр тромбоцита. Наличие этих отростков важно для остановки кровотечения.

В норме число тромбоцитов у здорового человека составляет 2—4-1011 /л, или 200—400 тыс. в 1 мкл. Увеличение числа тром­боцитов носит наименование «тромбоцитоз», уменьшение — «тромбоцитопения». В естественных условиях число тромбоцитов подвержено значительным колебаниям (количество их возрастает при болевом раздражении, физической нагрузке, стрессе), но редко выходит за пределы нормы. Как правило, тромбоцитопения является признаком патологии и наблюдается при лучевой болезни, врож­денных и приобретенных заболеваниях системы крови.

Основное назначение тромбоцитов — участие в процессе гемо­стаза (см. раздел 6.4). Важная роль в этой реакции принадлежит так называемым тромбоцитарным факторам, которые со­средоточены главным образом в гранулах и мембране тромбоцитов. Часть из них обозначают буквой Р (от слова platelet — пластинка) и арабской цифрой (Р1, Р2 и т. д.). Наиболее важными являются Р3, или частичный (неполный) тромбопластин, представляющий осколок клеточной мембраны; Р4, или антигепариновый фактор; Р5, или фибриноген тромбоцитов; АДФ; контрактильный белок тромбастенин (напоминающий актомиозин), вазоконстрикторные факторы — серотонин, адреналин, норадреналин и др. Значительная роль в гемостазе отводится тромбоксану А2 (ТхА2), который син­тезируется из арахидоновой кислоты, входящей в состав клеточных мембран (в том числе и тромбоцитов) под влиянием фермента тромбоксансинтетазы.

На поверхности тромбоцитов находятся гликопротеиновые обра­зования, выполняющие функции рецепторов. Часть из них «зама­скирована» и экспрессируется после активации тромбоцита стиму­лирующими агентами — АДФ, адреналином, коллагеном, микро­фибриллами и др.

Тромбоциты принимают участие в защите организма от чуже­родных агентов. Они обладают фагоцитарной активностью, содержат IgG, являются источником лизоцима и β-лизинов, способных раз­рушать мембрану некоторых бактерий. Кроме того, в их составе обнаружены пептидные факторы, вызывающие превращение «нуле­вых» лимфоцитов (0-лимфоциты) в Т- и В-лимфоциты. Эти соеди­нения в процессе активации тромбоцитов выделяются в кровь и при травме сосудов защищают организм от попадания болезнетвор­ных микроорганизмов.

Регуляторами тромбоцитопоэза являются тромбоцитопоэтины кратковременного и длительного действия. Они образуются в костном мозге, селезенке, печени, а также входят в состав мегакариоцитов и тромбоцитов. Тромбоцитопоэтины кратковременного действия усиливают отшнуровку кровяных пластинок от мегакариоцитов и ускоряют их поступление в кровь; тромбоцитопоэтины длительного действия способствуют переходу предшественников гигантских клеток костного мозга в зрелые мегакариоциты. На активность тромбоцитопоэтинов непосредственное влияние оказы­вают ИЛ-6 и ИЛ-11.


Комментарии
  1. Елена Петровна () Только что
    Спасибо Вам огромное! Полностью вылечила гипертонию с помощью NORMIO.
  2. Евгения Каримова () 2 недели назад
    Помогите!!1 Как избавиться от гипертонии? Может какие народные средства есть хорошие или что-нибудь из аптечных приобрести посоветуете???
  3. Дарья () 13 дней назад
    Ну не знаю, как по мне большинство препаратов - полная фигня, пустатая трата денег. Знали бы вы, сколько я уже перепробовала всего.. Нормально помог только NORMIO (кстати, по спец. программе почти бесплатно можно получить). Пила его 4 недели, уже после первой недели приема самочувствие улучшилось. С тех пор прошло уже 4 месяца, давление в норме, о гипертонии и не вспоминаю! Средство иногда снова пью 2-3 дня, просто для профилактики. А узнала про него вообще случайно, из этой статьи..

    P.S. Только вот я сама из города и у нас его в продаже не нашла, заказывала через интернет.
  4. Евгения Каримова () 13 дней назад
    Дарья, киньте ссылку на препарат!
    P.S. Я тоже из города ))
  5. Дарья () 13 дней назад
    Евгения Каримова, так там же в статье указана) Продублирую на всякий случай - официальный сайт NORMIO.
  6. Иван 13 дней назад
    Это далеко не новость. Об этом препарате уже все знают. А кто не знает, тех, видимо давление не мучает.
  7. Соня 12 дней назад
    А это не развод? Почему в Интернете продают?
  8. юлек36 (Тверь) 12 дней назад
    Соня, вы в какой стране живете? В интернете продают, потому-что магазины и аптеки ставят свою наценку зверскую. К тому-же оплата только после получения, то есть сначала получили и только потом заплатили. Да и в Интернете сейчас все продают - от одежды до телевизоров и мебели.
  9. Ответ Редакции 11 дней назад
    Соня, здравствуйте. Средство от гипертонии NORMIO действительно не реализуется через аптечную сеть и розничные магазины во избежание завышенной цены. На сегодняшний день оригинальный препарат можно заказать только на специальном сайте. Будьте здоровы!
  10. Соня 11 дней назад
    Извиняюсь, не заметила сначала информацию про наложенный платеж. Тогда все в порядке точно, если оплата при получении.
  11. александра 10 дней назад
    чтобы капли помогли? да ладно вам, люди, не дошла еще до этого промышленность
  12. Елена (Сыктывкар) 10 дней назад
    Случайно набрела на эту статью. И что я вижу!! Рекламируют наш NORMIO! Ну не в смысле мой, а в том плане, что я мужу его покупала. Он не знает, что я здесь пишу, но все-таки поделюсь. Это ж и моя радость, скорее даже полностью мое счастье! Короче, я вот тоже читала отзывы, смотрела как и что и заказала это средство. А то мой муж уже весь отчаялся, уже много лет было давление 180 на 110! Таблетки разные пил от этого у него с желудком проблемы были, а давление все равно было высокое. Решали чего дальше делать. А тут в общем начал NORMIO пить и теперь ура! Никаких проблем у него, давление в норме, всегда бодр и активен!
  13. Павел Солонченко 10 дней назад
    Подтверждаю, этот препарат действительно помогает! Вылечил свою гипертонию всего за 4 недели! До этого 4 года мучался от постоянного давления, головных болей и т.д. Спасибо большое!
  14. Юлия Л 10 дней назад
    С трудом верится... но столько людей говорит что работает, должно работать. Я завтра начинаю!
  15. Оксана (Ульяновск) 8 дней назад
    Хочу постараться избавиться от гипертонии побыстрее, а главное как-нибудь попроще и безболезненно, посоветуйте что-нибудь.
  16. Дмитрий (врач Кардиолог) 8 дней назад
    Валерия, лучший вариант - обратиться к врачу! Но если нет времени на поход в поликлинику, подойдет и NORMIO, который уже советовали выше. В последнее время многим его назначаю, результаты очень хорошие! Выздоравливайте.
  17. Оксана (Ульяновск) 8 дней назад
    Спасибо огромное за ответ, заказала!
  18. Наташа 5 дней назад
    У мужа гипертония, бегаем по врачам вместе. Люблю его, жизнь отдам за него, но никак не могу облегчить его страдания. Ладно, теперь Вы со своей историей появились, для нас появилась надежда. А то уже все перепробовали.
  19. Валера () 5 дней назад
    Совсем недавно хотел снова обратиться к врачам, уже к хирургу решился пойти, кругленькую сумму приготовил, но сейчас мне это не нужно! 2 месяца – и я здоров, прикиньте. Так что, народ, не дурите, никакие таблетки не по-мо-гут! Только это природное средство, других способов я не знаю, да и не хочу знать уже



Adblock detector