Сонограмма что это такое

Сонограмма что это такое

  • 26-07-2019
  • 0 Просмотров
  • 0 комментариев
  • 0 Рейтинг

Когда врач направляет пациента на УЗИ, лишних вопросов обычно не возникает. Но если в назначении использовано загадочное слово «сонография», то вопросы сыплются, как горох. А значит, стоит разобраться, сонография – что это такое? И в каких случаях пациенту дают подобное назначение.

Ассоциации

Первые ассоциации пациента связаны со сном, но сонография не имеет к этому никакого отношения. УЗИ и сонография – разные названия одной процедуры. Для этого же исследования иногда применяют название эхография. Исходя из этого, можно сделать простой вывод: УЗИ, эхография, сонография – что это такое? Это ультразвуковое исследование, производящее оценку морфологических и функциональных параметров органов и тканей человека.

На чем основан метод

Метод УЗИ базируется на особенностях ультразвуковых волн, пропущенных сквозь организм. В любом живом существе органы состоят из тканей различной плотности и сопротивления. Благодаря этому ультразвук отражается, преломляется, рассеивается или поглощается. В результате на принимающем устройстве возникает изображение. То есть фактически УЗИ является регистрацией отраженных от объектов эхосигналов.

Медицинская аппаратура для проведения УЗИ (сонографии) использует частоты от 1,5 до 29 МГц. Максимальная высота звука, которую может воспринимать человеческое ухо, 20 КГц. Полученное изображение – не просто контур внутреннего органа или участка кости, как при рентгене, а отображение внутренних структур.

Краткое описание аппарата УЗИ

Для проведения обследования используют медицинский аппарат УЗИ. Сонография – что это такое? Все ли аппараты одинаковы? Из каких элементов они состоят? Лучше всего в устройстве аппарата УЗИ могут разобраться физики. Они понимают, что такое пьезоэлектрический эффект, разбираются в длинах, колебаниях и частотах. Рядовому пациенту достаточно знать, что аппарат состоит из следующих элементов:

  • генератора ультразвуковых волн, то есть импульсного датчика, излучающего и одновременно принимающего отраженные сигналы;
  • ультразвукового датчика-трансдюсора, в котором располагается большое количество пьезокристаллических преобразователей, в датчике присутствует фокусирующая линза, позволяющая концентрировать внимание на нужной глубине.

Виды трансдюсоров (датчиков)

Первоначальное подразделение производится на механические и электронные приборы. Сканирование механическим датчиком выполняется за счет движения излучающего элемента (вращение или покачивание). Основной недостаток – низкое разрешение картинки, вибрация и шумная работа. Современная ультразвуковая сонография отказалась от устаревшей модели, предпочитая использовать электронные версии.

Электронные датчики относятся к более современному оборудованию. Развертка изображения производится электронным путем. Картинка получается более четкая и полная. Шум и вибрация при работе оборудования отсутствуют.

Ультразвуковое сканирование подразделяется на линейный, конвексный и секторный тип. Исходя из этого, применяется 3 вида датчиков:

  1. Линейный. Использует частоту 5-15 МГц. Выдает изображение исследуемой зоны с высоким разрешением картинки, величина органа соответствует ширине датчика, но глубина сканирования не более 11 см. Сложно обеспечить равномерное прилегание широкого датчика, чтобы получить качественную картинку. Используется для сканирования щитовидной железы, груди, некрупных суставов и мышечной ткани.
  2. Конвексный. Частота 1,9-7,5 МГц. Сканирующая поверхность меньшей длины, чем у линейного датчика. Позволяет обеспечить плотное равномерное прилегание к коже. Выдает неширокую картинку, несколько искаженную по размерам, но глубина осмотра до 25 см. Применяется для обследования органов брюшной и забрюшинной полости, мочеполовой системы, крупных суставов (тазобедренный, например).
  3. Секторный. Использует частоту 1,5–5 МГц. Изображение крупнее реального. Дает возможность сканирования на большой глубине. Чаще всего применяется для эхокардиографии.

Разные типы датчиков используют для обследования органов брюшной полости, сердца, щитовидной железы, груди, позвоночника и суставов. Кроме того, существуют микродатчики для эндоскопии и игл биопсии.

Обследование беременных

Оптимальным вариантом для полноценного обследования беременных считается компьютерная сонография. Подобное оборудование позволяет максимально внимательно рассмотреть состояние органов плода, начиная с четырехсантиметрового размера. Обследование полностью безопасно. Оно помогает с четвертой недели беременности прослушивать сердцебиение, определить и устранить угрозу выкидыша, уточнить срок беременности, определить задержки развития и другие отклонения.

Проходимость маточных труб

Необходимость оценки проходимости маточных труб возникает у женщин, которые не могут забеременеть в течение продолжительного срока. Сонография маточных труб – один из методов оценки причин, по которым яйцеклетка не может встретиться со сперматозоидом.

Сначала врач осматривает состояние полости матки, убеждается, что женщина не беременна и не имеет спаек, полипов и узлов. Далее в канал шейки матки вводится физиологический раствор, и с помощью сонографии оценивается проходимость маточных труб. Если трубы проходимы, то жидкость сливается с обеих сторон от органа в брюшную полость. Если жидкость не сливается, а заполняет отрезок маточной трубы и матку, то труба непроходима. УЗИ позволяет точно определить место блока.

Если пациент понимает значение термина «сонография», что это такое и зачем врач назначил обследование, то он не чувствует страха, готов выполнить необходимые требования доктора и правильно относится к процедуре. От этого зависит многое. Поскольку часто вместо обследования и лечения испуганные пациенты обращаются к шарлатанам и «целителям», теряя драгоценное время.

Спектроанализатор – что мы на нем видим?

Алексей Лукин

Спектроанализатор – прибор для измерения и отображения спектра сигнала – распределения энергии сигнала по частотам. В этой статье рассматриваются основные виды анализаторов спектра и иллюстрируется их применение для редактирования и реставрации звука. Особое внимание уделяется современным анализаторам, основанным на FFT – быстром преобразовании Фурье.

Зачем анализировать спектр?

Традиционно в цифровой звукозаписи аудиодорожка представляется в виде осциллограммы, отображающей форму звуковой волны (waveform), то есть зависимость амплитуды звука от времени. Такое представление достаточно наглядно для опытного звукорежиссёра: осциллограмма позволяет увидеть основные события в звуке, такие как изменения громкости, паузы между частями произведения и зачастую даже отдельные ноты в сольной записи инструмента. Но одновременное звучание нескольких инструментов на осциллограмме "смешивается" и визуальный анализ сигнала становится затруднительным. Тем не менее, наше ухо без труда различает отдельные инструменты в небольшом ансамбле. Как же это происходит?

Читайте также:  Синдром wpw на экг типы

Когда сложное звуковое колебание попадает на барабанную перепонку уха, оно с помощью серии слуховых косточек передаётся на орган, называемый улиткой. Улитка представляет собой закрученную в спираль эластичную трубочку. Толщина и жёсткость улитки плавно меняются от края к центру спирали. Когда сложное колебание поступает на край улитки, это вызывает ответные колебания разных частей улитки. При этом резонансная частота у каждой части улитки своя. Таким образом улитка раскладывает сложное звуковое колебание на отдельные частотные составляющие. К каждой части улитки подходят отдельные группы слуховых нервов, передающие информацию о колебаниях улитки в головной мозг (более подробно о слуховом восприятии можно прочитать в статье "Основы психоакустики" И. Алдошиной в журнале "Звукорежиссер" №6, 1999). В результате в мозг поступает информация о звуке, уже разложенная по частотам, и человек легко отличает высокие звуки от низких. Кроме того, как мы вскоре увидим, разложение звука на частоты помогает различить отдельные инструменты в полифонической записи, что значительно расширяет возможности редактирования.

Полосовые спектроанализаторы

Первые звуковые анализаторы спектра разделяли сигнал на частотные полосы с помощью набора аналоговых фильтров. Дисплей такого анализатора (рис. 1) показывает уровень сигнала во множестве частотных полос, соответствующих фильтрам.

На рис. 2 приведён пример частотных характеристик полосовых фильтров в анализаторе, удовлетворяющем стандарту ГОСТ 17168-82. Такой анализатор называется третьоктавным, так как в каждой октаве частотного диапазона имеется три полосы. Видно, что частотные характеристики полосовых фильтров перекрываются; их крутизна зависит от порядка используемых фильтров.

Важным свойством спектроанализатора является баллистика – инерционность измерителей уровня в частотных полосах. Она может регулироваться заданием скорости нарастания (атаки) и спада уровня. Типичное время атаки и спада в таком анализаторе – порядка 200 и 1500 мс.

Полосовые спектроанализаторы часто применяются для настройки АЧХ (амплитудно-частотной характеристики) акустических систем на концертных площадках. Если на вход такому анализатору подать розовый шум (имеющий одинаковую мощность в каждой октаве), то дисплей покажет горизонтальную линию, с возможной поправкой на вариацию шума во времени. Если розовый шум, проходя через звукоусилительную систему зала, исказился, то изменения его спектра будут видны на анализаторе. При этом анализатор, как и наше ухо, будет малочувствителен к узким провалам АЧХ (менее 1/3 октавы).

Преобразование Фурье

Преобразование Фурье – это математический аппарат для разложения сигналов на синусоидальные колебания. Например, если сигнал x(t) непрерывный и бесконечный по времени, то его можно представить в виде интеграла Фурье:

Интеграл Фурье собирает сигнал x(t) из бесконечного множества синусоидальных составляющих всевозможных частот ω, имеющих амплитуды Xω и фазы φω.

На практике нас больше интересует анализ конечных по времени звуков. Поскольку музыка не является статичным сигналом, её спектр меняется во времени. Поэтому при спектральном анализе нас обычно интересуют отдельные короткие фрагменты сигнала. Для анализа таких фрагментов цифрового аудиосигнала существует дискретное преобразование Фурье:

Здесь N отсчётов дискретного сигнала x(n) на интервале времени от 0 до N–1 синтезируются как сумма конечного числа синусоидальных колебаний с амплитудами Xk и фазами φk. Частоты этих синусоид равны kF/N, где F – частота дискретизации сигнала, а N – число отсчётов исходного сигнала x(n) на анализируемом интервале. Набор коэффициентов Xk называется амплитудным спектром сигнала. Как видно из формулы, частоты синусоид, на которые раскладывается сигнал, равномерно распределены от 0 (постоянная составляющая) до F/2 – максимально возможной частоты в цифровом сигнале. Такое линейное расположение частот отличается от распределения полос третьоктавного анализатора.

FFT-анализаторы

FFT (fast Fourier transform) – алгоритм быстрого вычисления дискретного преобразования Фурье. Благодаря ему стало возможным анализировать спектр звуковых сигналов в реальном времени.

Рассмотрим работу типичного FFT-анализатора. На вход ему поступает цифровой аудиосигнал. Анализатор выбирает из сигнала последовательные интервалы («окна»), на которых будет вычисляться спектр, и считает FFT в каждом окне для получения амплитудного спектра Xk. Вычисленный спектр отображается в виде графика зависимости амплитуды от частоты (рис. 3). Аналогично полосовым анализаторам, обычно используется логарифмический масштаб по осям частот и амплитуд. Но из-за линейного расположения полос FFT по частоте спектр может выглядеть недостаточно детальным на нижних частотах или излишне осциллирующим на верхних частотах.

Если рассматривать FFT как набор фильтров, то, в отличие от полосовых фильтров третьоктавного анализатора, фильтры FFT будут иметь одинаковую ширину в герцах, а не в октавах. Поэтому розовый шум на FFT-анализаторе будет уже не горизонтальной линией, а наклонной, со спадом 3 дБ/окт. Горизонтальной линией на FFT-анализаторе будет белый шум – он содержит равную энергию в равных линейных частотных интервалах.

Параметр N – число анализируемых отсчётов сигнала – имеет решающее значение для вида спектра. Чем больше N, тем плотнее сетка частот, по которым FFT раскладывает сигнал, и тем больше деталей по частоте видно на спектре. Для достижения более высокого частотного разрешения приходится анализировать более длинные участки сигнала. Если сигнал в пределах окна FFT меняет свои свойства, то спектр будет отображать некоторую усреднённую информацию о сигнале со всего интервала окна.

Когда нужно проанализировать быстрые изменения в сигнале, длину окна N выбирают маленькой. В этом случае разрешение анализа по времени увеличивается, а по частоте – уменьшается. Таким образом, разрешение анализа по частоте обратно пропорционально разрешению по времени. Этот факт называется соотношением неопределённостей.

Весовые окна

Один из простейших звуковых сигналов – синусоидальный тон. Как будет выглядеть его спектр на FFT-анализаторе? Оказывается, это зависит от частоты тона. Мы знаем, что FFT раскладывает сигнал не по тем частотам, которые на самом деле присутствуют в сигнале, а по фиксированной равномерной сетке частот. Например, если частота дискретизации равна 48 кГц и размер окна FFT выбран 4096 отсчётов, то FFT раскладывает сигнал по 2049 частотам: 0 Гц, 11.72 Гц, 23.44 Гц, . 24000 Гц.

Читайте также:  Минутный объем крови это

Если частота тона совпадает с одной из частот сетки FFT, то спектр будет выглядеть "идеально": единственный острый пик укажет на частоту и амплитуду тона (рис. 4, белый график).

Если же частота тона не совпадает ни с одной из частот сетки FFT, то FFT "соберёт" тон из имеющихся в сетке частот, скомбинированных с различными весами. График спектра при этом размывается по частоте (рис. 4, зелёный график). Такое размытие обычно нежелательно, так как оно может закрыть собой более слабые звуки на соседних частотах. Можно также заметить, что амплитуда максимума зелёного графика ниже реальной амплитуды анализируемого тона. Это связано с тем, что мощность анализируемого тона равна сумме мощностей коэффициентов спектра, из которых этот тон составлен.

(наведите мышь для выбора изображения)

Чтобы уменьшить эффект размытия спектра, сигнал перед вычислением FFT умножается на весовые окна – гладкие функции, похожие на гауссиан, спадающие к краям интервала. Они уменьшают размытие спектра за счёт некоторого ухудшения частотного разрешения. Если рассматривать FFT как набор полосовых фильтров, то весовые окна регулируют взаимное проникновение частотных полос.

Простейшее окно – прямоугольное: это константа 1, не меняющая сигнала. Оно эквивалентно отсутствию весового окна. Одно из популярных окон – окно Хэмминга. Оно уменьшает уровень размытия спектра примерно на 40 дБ относительно главного пика.

Весовые окна различаются по двум основным параметрам: степени расширения главного пика и степени подавления размытия спектра ("боковых лепестков"). Чем сильнее мы хотим подавить боковые лепестки, тем шире будет основной пик. Прямоугольное окно меньше всего размывает верхушку пика, но имеет самые высокие боковые лепестки. Окно Кайзера обладает параметром, который позволяет выбирать нужную степень подавления боковых лепестков.

Другой популярный выбор – окно Хана. Оно подавляет максимальный боковой лепесток слабее, чем окно Хэмминга, но зато остальные боковые лепестки быстрее спадают при удалении от главного пика. Окно Блэкмана обладает более сильным подавлением боковых лепестков, чем окно Хана.

Для большинства задач не очень важно, какой именно вид весового окна использовать. Главное, чтобы оно было. Популярный выбор – Хан или Блэкман. Использование весового окна уменьшает зависимость формы спектра от конкретной частоты сигнала и от её совпадения с сеткой частот FFT.

Рисунок 4 сделан для синусоид, однако, исходя из него, нетрудно представить, как будет выглядеть спектр реальных звуковых сигналов. Каждый пик в спектре будет иметь некоторую размытую форму, в зависимости от своей частоты и выбранного весового окна.

Чтобы компенсировать расширение пиков при применении весовых окон, можно использовать более длинные окна FFT: например, не 4096, а 8192 отсчета. Это улучшит разрешение анализа по частоте, но ухудшит по времени.

Спектрограмма

Часто возникает необходимость проследить, как спектр сигнала меняется во времени. FFT-анализаторы помогают сделать это в реальном времени при воспроизведении сигнала. Однако в ряде случаев оказывается удобна визуализация изменения спектра во всём звуковом отрывке сразу. Такое представление сигнала называется спектрограммой. Для её построения применяется оконное преобразование Фурье: спектр вычисляется от последовательных окон сигнала (рис. 5), и каждый из этих спектров образует столбец в спектрограмме.

По горизонтальной оси спектрограммы откладывается время, по вертикальной – частота, а амплитуда отображается яркостью или цветом. На спектрограмме гитарной ноты на рис. 6 видно развитие звучания: оно начинается с резкой атаки и продолжается в виде гармоник, кратных по частоте основному тону 440 Гц. Видно, что верхние гармоники имеют меньшую амплитуду и затухают быстрее, чем нижние. Также на спектрограмме прослеживается шум записи – равномерный фон тёмно-синего цвета. Справа показана шкала соответствия цветов и уровней сигнала (в децибелах ниже нуля).

(наведите мышь для выбора изображения)

Если менять размер окна FFT, становится хорошо видно, как меняется частотное и временное разрешение спектрограммы. При увеличении окна гармоники становятся тоньше, и их частота может быть определена более точно. Однако размывается во времени момент атаки (в левой части спектрограммы). При уменьшении размера окна наблюдается обратный эффект.

Особенно полезна спектрограмма при анализе быстро меняющихся сигналов. На рис. 7 показана спектрограмма вокального пассажа с вибрато. По ней легко определить такие характеристики голоса, как частота и глубина вибрато, его форма и ровность, наличие певческой форманты. По изменению высоты основного тона и гармоник прослеживается исполняемая мелодия.

(наведите мышь для выбора изображения)

Применения спектрограммы

Современные средства реставрации звука, такие как программа iZotope RX, активно используют спектрограмму для редактирования отдельных частотно-временных областей в сигнале. С помощью этой техники можно найти и подавить такие нежелательные призвуки, как звонок мобильного телефона во время важной записи, скрип стула пианиста, кашель в зрительном зале и т.п.

Проиллюстрируем использование спектрограммы для удаления свиста поклонников из концертной записи.

На рис. 8 свист легко находится: это светлая кривая линия в районе 3 кГц. Если бы частота свиста была постоянной, то его можно было бы подавить с помощью режекторного фильтра. Однако в нашем случае частота меняется. Для выделения свиста на спектрограмме удобно воспользоваться инструментом «волшебная палочка» из программы iZotope RX II. Одно нажатие приводит к выделению основного тона свиста, повторное нажатие выделяет гармоники. После этого свист можно удалить, просто нажав на клавишу Del. Однако более аккуратный способ – воспользоваться модулем Spectral Repair: это позволит избежать "дыр" в спектре после удаления свиста. После применения этого модуля в режиме ослабления с вертикальной интерполяцией (Attenuate vertically) свист практически полностью исчезает из записи: как визуально, так и на слух.

Еще одно полезное применение спектрограммы – анализ присутствия в записи следов компрессии MP3 или других кодеков с потерями. У большинства записей оригинального (несжатого) качества частотный диапазон простирается до 20 кГц и выше; при этом энергия сигнала плавно спадает с ростом частоты (как на рис. 6, 7). В результате психоакустической компрессии верхние частоты сигнала квантуются сильнее нижних, и верхняя граница спектра сигнала обнуляется (как на рис. 8). При этом частота среза зависит от содержания кодируемого сигнала и от битрейта кодера. Ясно, что кодер стремится обнулять только те частоты в сигнале, которые в данный момент не слышны (замаскированы). Поэтому частота среза, как правило, меняется во времени, что образует на спектрограмме характерную "бахрому" с островками энергии на тёмном фоне.

Читайте также:  Кфк при инфаркте миокарда

Спектрограмма часто позволяет найти в записи дефекты, которые неочевидны при прослушивании, но могут сказаться при последующей обработке. Например, паразитная наводка от ЭЛТ-видеомонитора на частоте 15–16 кГц может ускользнуть от уха пожилого звукорежиссёра. Однако спектрограмма ясно покажет её в виде горизонтальной линии (рис. 9) и позволит уточнить частоту для настройки режекторного фильтра.

Аналогичная ситуация иногда возникает и с низкочастотными помехами, такими как задувание ветра в микрофон или постоянная составляющая (смещение по постоянному току, DC offset). Они могут располагаться на инфранизких частотах и не обнаруживать себя без помощи спектроанализатора или осциллографа.

Заключение

Среди опытных звукорежиссёров старой школы распространено мнение, что анализировать и редактировать сигналы следует исключительно на слух, не полагаясь на индикаторы и анализаторы. Разумеется, анализаторы – не панацея в случае отсутствия слуха. Вряд ли кто-то серьёзно воспринимает идею сведения композиции "по приборам".

Не отрицая важности критического прослушивания звука на каждой стадии редактирования, мы всё же предлагаем использовать анализаторы спектра в тех задачах, где это может привести к более точным результатам. Конечно, можно определить на слух паразитный тон на частоте 15 кГц и подобрать режекторный фильтр подходящей добротности для его удаления. Но намного проще увидеть этот тон на спектроанализаторе и сразу более точно оценить его свойства: "плывёт" ли частота, есть ли боковые пики. В конечном счёте, это позволит более аккуратно удалить помеху. Аналогичная ситуация и со многими другими задачами редактирования, особенно – в реставрации звука.

Спектр и спектрограмма – способы представления звука, более близкие к слуховому восприятию, нежели осциллограмма. Надеюсь, что эта статья откроет новые возможности в анализе и редактировании звука для тех, кто ранее с этими представлениями не работал.

Что такое Сонограмма?

Сонограмма – это медицинская процедура, которая использует ультразвуковые волны для создания картины того, что происходит в теле человека. Это очень распространенная процедура во время беременности, и это то, что производит черно-белые фетальные снимки, которые так много новых родителей с гордостью показывают друзьям и семье.

Медицинские специалисты используют эту технологию для ряда заболеваний, включая биопсию рака и оценку органов. Изображения, созданные сонографом, дают экспертам относительно чистый взгляд в организм, чтобы понять, что происходит, не выполняя операции или другие инвазивные процедуры.

Как работает Сонограмма?

Машины Сонографы излучают звуковые волны, часто называемые ультразвуковыми волнами, которые отскакивают от органов, костей и мышц. Машины могут вычислять расстояние между волнами, чтобы генерировать очень точные изображения, которые отображаются на специализированном экране компьютера.

В большинстве случаев волны посылаются и принимаются от палочковидного инструмента, известного как преобразователь. Обученный техник обычно осторожно прикасается к палочке к коже над областью интереса. Желе или смазку часто применяют сначала, чтобы помочь скольжению палочки и усилить звуковые волны, чтобы создать более четкую и точную картину.

Большинство сеансов сонограммы приводят к фотографиям с разных точек зрения, которые технические специалисты и медицинские работники последовательно просматривают, чтобы понять, что происходит внутри.

Безопасно ли использование сонограммы во время беременности?

Врачи и медицинские бригады во многих частях мира используют технологию сонограммы в качестве способа мониторинга беременности. Фотографии сонограммы могут помочь выявить основную анатомию развивающегося плода и могут часто обнаруживать врожденные дефекты и аномалии очень рано. В большинстве случаев эта технология также может определять пол растущего ребенка.

Когда-то на месте, датчик, как правило, способен обнаруживать наличие роста плода – и часто может даже фиксировать сердцебиение ребенка.

Другие медицинские применения сонограммы

Практикующие здравоохранения обычно используют ультразвуковую технологию для исследования неизвестных причин внутренних болей, а также для диагностики и мониторинга необычных родов, таких как опухоли. Изображения, полученные из звуковых волн, могут помочь специалистам получить четкое представление о том, что происходит внутри тела.

Технология может идентифицировать пороки развития органов, синяки или другие внутренние травмы. Получение хорошей картины перед операцией или другим лечением может помочь медицинским работникам сделать лучшие, наиболее подходящие рекомендации.

Противопоказания для проведения сонограмма

Сонограммы широко считаются низкими рисками и обычно классифицируются как «неинвазивные». Однако это не означает, что они всегда полностью безопасны. Известно, что используемые звуковые волны сильно нагревают ткани тела, а также могут создавать небольшие карманы газа в редких случаях. Хотя это и не обязательно вредно, эти эффекты будут иногда вызывать осложнения, особенно когда речь идет о кровеносных сосудах и плотности костной ткани – нагретые газы в этих областях могут вызвать дискомфорт, свертывание крови и структурное ослабление.

Чтобы смягчить возможные риски для развивающегося ребенка, большинство медицинских работников с успехом используют сонограммы только с перерывами во время беременности. Хотя родители часто хотят видеть образы своего растущего ребенка при каждом посещении врача, это обычно не разрешается, если нет законной медицинской необходимости.

Ограничение количества управляемых сонограмм – один из способов, которыми медицинские работники защищают младенцев от потенциальных рисков. Прослушивание сердечного ритма плода и контроль за работой крови матери часто так же эффективны, чтобы ребенок оставался здоровым, как картина в реальном времени.

Подготовка к процедуре Сонограммы

Сонограммы, как правило, очень легко выполнять, и пациентам обычно не нужно делать что-либо особенное для подготовки. Ношение свободной одежды обычно является хорошей идеей, так как техникам часто приходится перемещать или перемещать одежду вокруг, чтобы поместить датчик на кожу. В противном случае, просто оставаясь спокойным и делая глубокий вдох, как правило, лучший способ подготовиться.


Комментарии
  1. Елена Петровна () Только что
    Спасибо Вам огромное! Полностью вылечила гипертонию с помощью NORMIO.
  2. Евгения Каримова () 2 недели назад
    Помогите!!1 Как избавиться от гипертонии? Может какие народные средства есть хорошие или что-нибудь из аптечных приобрести посоветуете???
  3. Дарья () 13 дней назад
    Ну не знаю, как по мне большинство препаратов - полная фигня, пустатая трата денег. Знали бы вы, сколько я уже перепробовала всего.. Нормально помог только NORMIO (кстати, по спец. программе почти бесплатно можно получить). Пила его 4 недели, уже после первой недели приема самочувствие улучшилось. С тех пор прошло уже 4 месяца, давление в норме, о гипертонии и не вспоминаю! Средство иногда снова пью 2-3 дня, просто для профилактики. А узнала про него вообще случайно, из этой статьи..

    P.S. Только вот я сама из города и у нас его в продаже не нашла, заказывала через интернет.
  4. Евгения Каримова () 13 дней назад
    Дарья, киньте ссылку на препарат!
    P.S. Я тоже из города ))
  5. Дарья () 13 дней назад
    Евгения Каримова, так там же в статье указана) Продублирую на всякий случай - официальный сайт NORMIO.
  6. Иван 13 дней назад
    Это далеко не новость. Об этом препарате уже все знают. А кто не знает, тех, видимо давление не мучает.
  7. Соня 12 дней назад
    А это не развод? Почему в Интернете продают?
  8. юлек36 (Тверь) 12 дней назад
    Соня, вы в какой стране живете? В интернете продают, потому-что магазины и аптеки ставят свою наценку зверскую. К тому-же оплата только после получения, то есть сначала получили и только потом заплатили. Да и в Интернете сейчас все продают - от одежды до телевизоров и мебели.
  9. Ответ Редакции 11 дней назад
    Соня, здравствуйте. Средство от гипертонии NORMIO действительно не реализуется через аптечную сеть и розничные магазины во избежание завышенной цены. На сегодняшний день оригинальный препарат можно заказать только на специальном сайте. Будьте здоровы!
  10. Соня 11 дней назад
    Извиняюсь, не заметила сначала информацию про наложенный платеж. Тогда все в порядке точно, если оплата при получении.
  11. александра 10 дней назад
    чтобы капли помогли? да ладно вам, люди, не дошла еще до этого промышленность
  12. Елена (Сыктывкар) 10 дней назад
    Случайно набрела на эту статью. И что я вижу!! Рекламируют наш NORMIO! Ну не в смысле мой, а в том плане, что я мужу его покупала. Он не знает, что я здесь пишу, но все-таки поделюсь. Это ж и моя радость, скорее даже полностью мое счастье! Короче, я вот тоже читала отзывы, смотрела как и что и заказала это средство. А то мой муж уже весь отчаялся, уже много лет было давление 180 на 110! Таблетки разные пил от этого у него с желудком проблемы были, а давление все равно было высокое. Решали чего дальше делать. А тут в общем начал NORMIO пить и теперь ура! Никаких проблем у него, давление в норме, всегда бодр и активен!
  13. Павел Солонченко 10 дней назад
    Подтверждаю, этот препарат действительно помогает! Вылечил свою гипертонию всего за 4 недели! До этого 4 года мучался от постоянного давления, головных болей и т.д. Спасибо большое!
  14. Юлия Л 10 дней назад
    С трудом верится... но столько людей говорит что работает, должно работать. Я завтра начинаю!
  15. Оксана (Ульяновск) 8 дней назад
    Хочу постараться избавиться от гипертонии побыстрее, а главное как-нибудь попроще и безболезненно, посоветуйте что-нибудь.
  16. Дмитрий (врач Кардиолог) 8 дней назад
    Валерия, лучший вариант - обратиться к врачу! Но если нет времени на поход в поликлинику, подойдет и NORMIO, который уже советовали выше. В последнее время многим его назначаю, результаты очень хорошие! Выздоравливайте.
  17. Оксана (Ульяновск) 8 дней назад
    Спасибо огромное за ответ, заказала!
  18. Наташа 5 дней назад
    У мужа гипертония, бегаем по врачам вместе. Люблю его, жизнь отдам за него, но никак не могу облегчить его страдания. Ладно, теперь Вы со своей историей появились, для нас появилась надежда. А то уже все перепробовали.
  19. Валера () 5 дней назад
    Совсем недавно хотел снова обратиться к врачам, уже к хирургу решился пойти, кругленькую сумму приготовил, но сейчас мне это не нужно! 2 месяца – и я здоров, прикиньте. Так что, народ, не дурите, никакие таблетки не по-мо-гут! Только это природное средство, других способов я не знаю, да и не хочу знать уже



Adblock detector