Пучок гиса и волокна пуркинье

Пучок гиса и волокна пуркинье

  • 26-07-2019
  • 0 Просмотров
  • 0 комментариев
  • 0 Рейтинг

  • Физиология
  • История физиологии
  • Методы физиологии

Структура сердца

Сердце — мышечный орган, состоящий из четырех камер:

  • правого предсердия, собирающего венозную кровь из организма;
  • правого желудочка, нагнетающего венозную кровь в малый круг кровообращения — в легкие, где и происходит газообмен с атмосферным воздухом;
  • левого предсердия, собирающего обогащенную кислородом кровь из легочных вен;
  • левого желудочка, обеспечивающего продвижение крови ко всем органам организма.

Кардиомиоциты

Стенки предсердий и желудочков состоят из поперечно-полосатой мышечной ткани, представленной кардиомиоцитами и имеющей ряд отличий от ткани скелетных мышц. Кардиомиоциты составляют около 25% от общего числа клеток сердца и около 70% массы миокарда. В составе стенок сердца имеются фибробласты, гладкомышечные клетки сосудов, эндотелиальные и нервные клетки.

В мембране кардиомиоцитов содержатся белки, выполняющие транспортные, ферментативные и рецепторные функции. Среди последних — рецепторы гормонов, катехоламинов и других сигнальных молекул. Кардиомиоциты имеют одно или несколько ядер, множество рибосом и аппарат Гольджи. Они способны синтезировать сократительные и белковые молекулы. В этих клетках синтезируются некоторые белки, специфические для определенных стадий клеточного цикла. Однако кардиомиоциты рано теряют способность делиться и их созревание, равно как и приспособление к возрастающим нагрузкам, сопровождается увеличением массы клеток и их размеров. Причины потери клетками способности делиться остаются неясными.

Кардиомиоциты отличаются по своему строению, свойствам и функциям. Различают типичные, или сократительные, кардиомиоциты и атипичные, формирующие в сердце проводящую систему.

Типичные кардиомиоциты – сократительные клетки, образующие предсердия и желудочки.

Атипичные кардиомиоциты – клетки проводящей системы сердца, обеспечивающие возникновение возбуждения в сердце и проведение его от места возникновения к сократительным элементам предсердий и желудочков.

Абсолютное большинство кардиомиоцитов (волокон) сердечной мышцы принадлежит к рабочему миокарду, который обеспечивает сокращения сердца. Сокращение миокарда называют систолой, расслабление – диастолой. Имеются также атипичные кардиомиоциты и волокна сердца, функцией которых является генерация возбуждения и проведение его к сократительному миокарду предсердий и желудочков. Эти клетки и волокна формируют проводящую систему сердца.

Сердце окружено перикардом — околосердечной сумкой, отграничивающей сердце от соседних органов. Перикард состоит из фиброзного слоя и двух листков серозного перикарда. Висцеральный листок, называемый эпикардом, сращен с поверхностью сердца, а париетальный — с фиброзным слоем перикарда. Щель между этими листками заполнена серозной жидкостью, наличие которой уменьшает трение сердца с окружающими структурами. Относительно плотный наружный слой перикарда защищает сердце от перерастяжения и чрезмерного переполнения кровью. Внутренняя поверхность сердца представлена эндотелиальной выстилкой, называемой эндокардом. Между эндокардом и перикардом располагается миокард – сократительные волокна сердца.

Проводящая система сердца

Проводящая система сердца – совокупность атипичных кардиомиоцитов, образующих узлы: синоатриальный и атриовентрикулярный, межузловые тракты Бахмана, Венкебаха и Тореля, пучки Гиса и волокона Пуркинье.

Функциями проводящей системы сердца являются генерация потенциала действия, проведение его к сократительному миокарду, инициирование сокращения и обеспечение определенной последовательности сокращений предсердий и желудочков. Возникновение возбуждения в водителе ритма осуществляется с определенным ритмом произвольно, без воздействия внешних стимулов. Это свойство клеток водителя ритма получило название автоматик.

Проводящая система сердца состоит из узлов, пучков и волокон, сформированных атипичными мышечными клетками. В ее структуру входит синоатриальный (СА) узел, расположенный в стенке правого предсердия спереди устья верхней полой вены (рис. 1).

Рис. 1. Схематическое строение проводящей системы сердца

От СА-узла отходят пучки (Бахмана, Венкебаха, Тореля) атипичных волокон. Поперечный пучок (Бахмана) проводит возбуждение к миокарду правого и левого предсердий, а продольные — к атриовентрикулярному (АВ) узлу, расположенному под эндокардом правого предсердия в его нижнем углу в области, прилегающей к межпредсердной и атриовентрикулярной перегородкам. От АВ-узла отходит пучок Гпса. Он проводит возбуждение к миокарду желудочков и поскольку на границе миокарда предсердий и желудочков располагается соединительнотканная перегородка, образованная плотными фиброзными волоконами, то у здорового человека пучок Гиса является единственным путем, по которому потенциал действия может распространиться к желудочкам.

Начальная часть (ствол пучка Гиса) расположена в перепончатой части межжелудочковой перегородки и делится на правую и левую ножки пучка Гиса, которые также находятся в межжелудочковой перегородке. Левая ножка делится на переднюю и заднюю ветви, которые, как и правая ножка пучка Гиса, ветвятся и заканчиваются волокнами Пуркинье. Волокна Пуркинье расположены в субэндокардиальной области сердца и проводят потенциалы действия непосредственно к сократительному миокарду.

Механизм автоматик и проведение возбуждения по проводящей системе

Генерация потенциалов действия осуществляется в нормальных условиях специализированными клетками СА-узла, который называют водителем ритма 1-го порядка или пейсмекером. У здорового взрослого человека в нем ритмично генеририруются потенциалы действия с частотой 60-80 за 1 мин. Источником этих потенциалов являются атипичные круглые клетки СА-узла, имеющие небольшие размеры, содержащие мало органелл и редуцированный сократительный аппарат. Иногда их называют Р-клетками. В узле имеются также клетки вытянутой формы, занимающие промежуточное положение между атипичными и обычными сократительными кардиомиоцитами предсердий. Их называют переходными клетками.

Р-клетки покрыты цитоплазматической мембраной, содержащей ряд разнообразных ионных каналов. Среди них имеются пассивные и потенциалзависимые ионные каналы. Потенциал покоя в этих клетках составляет 40-60 мВ и является неустойчивым, что обусловлено различной проницаемостью ионных каналов. Во время диастолы сердца мембрана клетки самопроизвольно медленно деполяризуется. Этот процесс назван медленной диастолической деполяризацией (МДД) (рис. 2).

Рис. 2. Потенциалы действия сократительных миоцитов миокарда (а) и атипичных клеток СА-узла (б) и их ионные токи. Пояснения в тексте

Как видно на рис. 2, сразу же после окончания предыдущего потенциала действия начинается спонтанная МДД мембраны клетки. МДД в самом начале ее развития обусловлена входом ионов Na+ через пассивные натриевые каналы и задержкой выхода ионов К+ вследствие закрытия пассивных калиевых каналов и снижения выхода ионов К+ из клетки. Вспомним, что выходящие через эти каналы ионы К обычно обеспечивают реполяризацию и даже некоторую степень гиперполяризации мембраны. Очевидно, что снижение проницаемости калиевых каналов и задержка выхода ионов К+ из Р-клетки вместе с поступлением в клетку ионов Na+ будут вести к накоплению положительных зарядов на внутренней поверхности мембраны и развитию МДД. МДД в области значений Eкр (около-40 мВ) сопровождается открытием потенциалзависимых медленных кальциевых каналов, через которые в клетку поступают ионы Са 2+ , обусловливающие развитие поздней части МДД и фазы ноль потенциала действия. Хотя допускается, что в это время возможно дополнительное поступление в клетку ионов Na+ через кальциевые каналы (кальций-натриевые каналы), но решающую роль в развитии самоускоряющейся фазы деполяризации и перезарядке мембраны играют входящие в пейсмекерную клетку ионы Са 2 +. Генерация потенциала действия развивается относительно медленно, так как вход ионов Са 2+ и Na+ в клетку происходит через медленные ионные каналы.

Перезарядка мембраны ведет к инактивации кальциевых и натриевых каналов и прекращению входа ионов в клетку. К этому времени нарастает выход из клетки ионов К+ через медленные потенциалзависимые калиевые каналы, открытие которых происходит при Eкр одновременно с активацией упоминавшихся кальциевых и натриевых каналов. Выходящие ионы К+ реполяризуют и несколько гиперполяризуют мембрану, после чего их выход из клетки задерживается и таким образом процесс самовозбуждения клетки повторяется. Ионное равновесие в клетке поддерживается работой натрий-калиевого насоса и натрий-кальциевого обменного механизма. Частота возникновения потенциалов действия в пейсмекере зависит от скорости спонтанной деполяризации. При возрастании этой скорости частота генерации пейсмекерных потенциалов и частота сердечных сокращений увеличиваются.

Из СА-узла потенциал распространяется со скоростью около 1 м/с в радиальном направлении на миокард правого предсердия и по специализированным проводящим путям на миокард левого предсердия и к АВ-узлу. Последний сформирован теми же типами клеток, что и СА-узел. Они также обладают способностью самовозбуждаться, но в нормальных условиях она не проявляется. Клетки АВ-узла могут начать генерировать потенциалы действия и стать водителем ритма сердца, когда к ним не поступают потенциалы действия от СА-узла. В обычных условиях потенциалы действия, возникшие в СА-узле, проводятся через область АВ-узла к волокнам пучка Гиса. Скорость их проведения в области АВ-узла резко уменьшается и промежуток времени, необходимый для распространения потенциала действия, удлиняется до 0,05 с. Эту временную задержку проведения потенциала действия в области АВ-узла называют атриовентрикулярной задержкой.

Одной из причин АВ-задержки является особенность ионных и, прежде всего кальциевых ионных, каналов мембран клеток, формирующих АВ-узел. Это находит свое отражение в более низкой скорости МДД и генерации потенциала действия этими клетками. Кроме того, клетки промежуточного участка АВ-узла характеризуются более продолжительным периодом рефрактерности, превышающим по времени фазу реполяризации потенциала действия. Проведение возбуждения в области АВ-узла предполагает его возникновение и передачу с клетки на клетку, поэтому замедление этих процессов на каждой клетке, участвующей в проведении потенциала действия, обусловливает более длительное суммарное время проведения потенциала через АВ-узел.

АВ-задержка имеет важное физиологическое значение в установлении определенной последовательности систол предсердий и желудочков. В нормальных условиях систола предсердий всегда предшествует систоле желудочков и систола желудочков начинается сразу же после завершения систолы предсердий. Именно благодаря АВ-задержке проведения потенциала действия и более позднего возбуждения миокарда желудочков по отношению к миокарду предсердий, желудочки заполняются необходимым объемом крови, а предсердия успевают совершить систолу (прссистолу) и изгнать дополнительный объем крови в желудочки. Объем крови в полостях желудочков, накапливаемый к началу их систолы, способствует осуществлению наиболее эффективного сокращения желудочков.

В условиях, когда нарушена функция СА-узла или имеется блокада проведения потенциала действия от СА-узла к АВ-узлу, роль водителя ритма сердца может взять на себя АВ-узел. Очевидно, что вследствие более низких скоростей МДД и развития потенциала действия клеток этого узла частота генерируемых им потенциалов действия будет ниже (около 40- 50 в 1 мин), чем частота генерации потенциалов клетками С А-узла.

Время от момента прекращения поступления потенциалов действия от водителя ритма к АВ-узлу до момента проявления его автоматии называют преавтоматической паузой. Ее длительность обычно находится в пределах 5-20 с. В это время сердце не сокращается и чем короче преавтоматическая пауза, тем лучше для больного человека.

При нарушении функции СА- и АВ-узлов водителем ритма может стать пучок Гиса. При этом максимальная частота его возбуждений составит 30-40 в 1 мин. При такой частоте сокращений сердца даже в состоянии покоя у человека будут проявляться симптомы недостаточности кровообращения. Волокна Пуркинье могут генерировать до 20 импульсов в 1 мин. Из приведенных данных видно, что в проводящей системе сердца существует градиент автомашин — постепенное снижение частоты генерации потенциалов действия ее структурами по направлению от СА-узла к волокнам Пуркинье.

Преодолев АВ-узел, потенциал действия распространяется на пучок Гиса, затем на правую ножку, левую ножку пучка Гиса и ее ветви и достигает волокон Пуркинье, где скорость его проведения возрастает до 1-4 м/с и за 0,12-0,2 с потенциал действия достигает окончаний волокон Пуркинье, с помощью которых проводящая система взаимодействует с клетками сократительного миокарда.

Волокна Пуркинье сформированы клетками, имеющими диаметр 70-80 мкм. Полагают, что это является одной из причин того, что скорость проведения потенциала действия данными клетками достигает наиболее высоких значений — 4 м/с по сравнению со скоростью в любых других клетках миокарда. Время проведения возбуждения по волокнам проводящей системы, связывающим СА- и АВ-узлы, АВ-узлу, пучку Гиса, его ножкам и волокнам Пуркинье до миокарда желудочков определяет продолжительность интервала РО на ЭКГ и колеблется в норме в пределах 0,12-0,2 с.

Не исключается, что в передаче возбуждения с волокон Пуркинье на сократительные кардиомиоциты принимают участие переходные клетки, характеризующиеся как промежуточные между клетками Пуркинье и сократительными кардиомио- цитами, структурой и свойствами.

В скелетной мышце к каждой клетке поступает потенциал действия по аксону мотонейрона и после сииаптической передачи сигнала на мембране каждого миоцита генерируется собственный потенциал действия. Взаимодействие волокон Пуркинье и миокарда совершенно иные. По всем волокнам Пуркинье к миокарду предсердий и обоих желудочков проводится потенциал действия, возникший в одном источнике — водителе ритма сердца. Этот потенциал проводится в точки контакта окончаний волокон и сократительных кардиомиоцитов в субэндокардиальной поверхности миокарда, но не к каждому миоциту. Между волокнами Пуркинье и кардиомиоцитами отсутствуют синапсы и нейромедиаторы и возбуждение может быть передано с проводящей системы на миокард через ионные каналы щелевых контактов.

Возникающий в ответ на мембранах части сократительных кардиомиоцитов потенциал проводится по поверхности мембран и по Т-трубочкам внутрь миоцитов с помощью локальных круговых токов. Потенциал передается также соседним клеткам миокарда через каналы щелевых контактов вставочных дисков. Скорость передачи потенциала действия между миоцитами достигает в миокарде желудочков 0,3-1 м/с, что способствует синхронизации сокращения кардиомиоцитов и более эффективному сокращению миокарда. Нарушение передачи потенциалов через ионные каналы щелевых контактов может быть одной из причин десинхронизации сокращения миокарда и развития слабости его сокращения.

В соответствии со строением проводящей системы потенциал действия достигает первоначально верхушечной области межжелудочковой перегородки, сосочковых мышц, верхушки миокарда. Возникшее в ответ на поступление этого потенциала в клетках сократительного миокарда возбуждение распространяется в направлениях от верхушки миокарда к его основанию и от эндокардиальной поверхности к эпикардиальной.

Функции проводящей системы

Спонтанная генерация ритмических импульсов является результатом слаженной деятельности многих клеток синусно-предсердного узла, которая обеспечивается тесными контактами (нексусы) и электротоническим взаимодействием этих клеток. Возникнув в синусно-предсердном узле, возбуждение распространяется по проводящей системе на сократительный миокард.

Возбуждение распространяется по предсердиям со скоростью 1 м/с, достигая атриовентрикулярного узла. В сердце теплокровных животных существуют специальные проводящие пути между синусно-предсердным и атриовентрикулярным узлами, а также между правым и левым предсердиями. Скорость распространения возбуждения в этих проводящих путях ненамного превосходит скорость распространения возбуждения по рабочему миокарду. В атриовентрикулярном узле благодаря небольшой толщине его мышечных волокон и особому способу их соединения (построен по принципу синапса) возникает некоторая задержка проведения возбуждения (скорость распространения составляет 0,2 м/с). Вследствие задержки возбуждение доходит до атриовентрикулярного узла и волокон Пуркинье лишь после того, как мускулатура предсердий успевает сократиться и перекачать кровь из предсердий в желудочки.

Следовательно, атриовентрикулярная задержка обеспечивает необходимую последовательность (координацию) сокращений предсердий и желудочков.

Скорость распространения возбуждение в пучке Гиса и в волокнах Пуркинье достигает 4,5-5 м/с, что в 5 раз больше скорости распространения возбуждения по рабочему миокарду. Благодаря этому клетки миокарда желудочков вовлекаются в сокращение почти одновременно, т.е. синхронно. Синхронность сокращения клеток повышает мощность миокарда и эффективность нагнетательной функции желудочков. Если бы возбуждение проводилось не через атриовентрикулярный пучок, а по клеткам рабочего миокарда, т.е. диффузно, то период асинхронного сокращения продолжался бы значительно дольше, клетки миокарда вовлекались бы в сокращение не одновременно, а постепенно и желудочки потеряли бы до 50% своей мощности. Это не позволило бы создать достаточного давления, обеспечивающего выброс крови в аорту.

Таким образом, наличие проводящей системы обеспечивает ряд важных физиологических особенностей сердца:

  • спонтанную деполяризацию;
  • ритмическую генерация импульсов (потенциалов действия);
  • необходимую последовательность (координацию) сокращений предсердий и желудочков;
  • синхронное вовлечение в процесс сокращения клеток миокарда желудочков (что увеличивает эффективность систолы).

Мотор и пламенный двигатель человеческого организма – сердце, совершает огромную работу, перекачивая около 290 литров крови каждый час, если человек находится в состоянии покоя. При физической нагрузке на организм, объём проходящей крови через сердце гораздо больше.

Кроме насосной функции, обеспечивающей беспрестанное движение крови по сосудам, сердце обладает другими важными функциями, которые делают его уникальным органом.

1 Сам себе хозяин или функция автоматизма

Сердечные клетки способны сами вырабатывать или генерировать электрические импульсы. Эта функция наделяет сердце некой степенью свободы или автономности: мышечные клетки сердца независимо от прочих органов и систем человеческого тела способны сокращаться с определённой частотой. Напомним, что частота сокращений в норме от 60 до 90 ударов в минуту. Но все ли сердечные клетки наделены данной функцией?

Нет, в сердце существует особая система, которая включает специальные клетки, узлы, пучки и волокна — это проводящая система. Клетки проводящей системы — это клетки сердечной мышцы, кардиомиоциты, но только необычные или атипичные, называются они так, поскольку способны вырабатывать и проводить импульс к другим клеткам.

1. СА-узел. Синоатриальный узел или центр автоматизма первого порядка еще могут называть синусовым, синусно-предсердным, либо узлом Киса-Флека. Расположен в верхней части правого предсердия в синусе полых вен. Это важнейший центр проводящей системы сердца, потому что в нем есть клетки-пейсмекеры (pacemaker или P-клетки), которые и генерируют электрический импульс. Возникающий импульс обеспечивает формирование между кардиомиоцитами потенциала действия, формируется возбуждение и сердечное сокращение. Синоатриальный узел, как и другие отделы проводящей системы, обладает автоматизмом. Но именно СА-узел обладает автоматизмом в большей степени, и в норме он подавляет все другие очаги возникающего возбуждения. Т.е Помимо Р-клеток, в узле есть ещё Т-клетки, которые проводят возникший импульс к предсердиям.

2. Проводящие пути. От синусового узла возникшее возбуждение передаётся по межпредсердному пучку и межузловым трактам. 3 межузловых тракта — передний, средний, задний могут еще сокращённо обозначать латинскими буквами по первой букве фамилии учёных, описавших эти структуры. Передний обозначают буквой B (описал данный тракт немецкий учёный Bachman), средний — W (в честь патологоанатома Wenckebach, задний — T (по первой букве изучавшего задний пучок учёного Thorel). Межпредсердный пучок соединяет правое предсердие с левым при передаче возбуждения, межузловые тракты несут возбуждение от синусового узла к следующему звену проводящей системы сердца со скоростью около 1 м/с.

3. АВ-узел. Атриовентрикулярный узел (по автору узел Ашофа-Тавара) находится внизу правого предсердия у межпредсердной перегородки, причём располагается он чуть вдаваясь в перегородку между верхними и нижними сердечными камерами. Этот элемент проводящей системы имеет относительно немаленькие размеры 2×5 мм. В АВ-узле проводимость возбуждения затормаживается примерно на 0,02-0,08 сек. И природа эту задержку предусмотрела не зря: замедление импульсации необходимо сердцу для того, чтобы верхние сердечные камеры успели сократиться и переместить кровь в желудочки. Время проведения импульса по атриовентрикулярному узлу равно 2-6 см/c. — это самая низкая скорость распространения импульсации. Представлен узел Р- и Т-клетками, причём Р-клеток значительно меньше, чем Т-клеток.

Проводящая система сердца. Пучок Гиса

4. Пучок Гиса. Он располагается ниже АВ-узла (чёткой грани между ними провести не удаётся) и анатомически делится на две ветви или ножки. Правая ножка является продолжением пучка, а левая отдаёт заднюю и переднюю ветви. Каждая из вышеописанных ветвей отдаёт маленькие, тонкие, ветвящиеся волокна, которые называются волокнами Пуркинье. Скорость импульсации пучка — 1 м/c., ножек — 3-5м/с.

5. Волокна Пуркинье — заключительный элемент проводящей системы сердца.

В клинической врачебной практике часто встречаются случаи нарушения в работе проводящей системы в области передней веточки левой ножки и правой ножки тракта Гиса, также нередко встречаются нарушения работы синусного узла сердечной мышцы. При «поломке» синусового узла, АВ-узла развиваются различные блокады. Нарушение работы проводящей системы может приводить к возникновению аритмий.

Такова физиология и анатомическое строение проводящей нервной системы. Также можно обособить конкретные функции проводящей системы. Когда ясны функции, становится очевидным важность данной системы.

2 Функции автономной сердечной системы

Центры автоматизма работы сердца

1) Генерация импульсов. Синусный узел является центром автоматизма 1 порядка. В здоровом сердце синоатриальный узел — лидер по выработке электрических импульсов, обеспечивающий частоту и ритмичность сердечных толчков. Основная его функция — выработка импульсов с нормальной частотой. Синусный узел задаёт тон частоте сердечных толчков. Импульсы он вырабатывает с ритмом 60-90 ударов в минуту. Именно такая ЧСС для человека является нормой.

Атриовентрикулярный узел является центром автоматизма 2 порядка, он производит импульсы 40-50 в минуту. Если синусный узел по той или иной причине выключается из работы и не может главенствовать в работе проводящей системы сердца, его функцию берет на себя АВ-узел. Он становится «главным» источником автоматизма. Пучок Гиса и волокна Пуркинье — центры 3-го порядка, в них происходит импульсация с частотой 20 в минуту. Если 1 и 2 центры выходят из строя, центр 3-го порядка берёт на себя главенствующую роль.

2) Подавление возникающей импульсации из других патологических источников. Проводящая система сердца «фильтрует и выключает» патологическую импульсацию из других очагов, добавочных узлов, которые в норме не должны быть активны. Так поддерживается нормальная физиологическая сердечная деятельность.

3) Проведение возбуждения от вышележащих отделов к нижележащим или нисходящее проведение импульсов. В норме возбуждение охватывает сначала верхние сердечные камеры, а затем желудочки, за это также ответственны центры автоматизма и проводящие тракты. Восходящее проведение импульсов в здоровом сердце невозможно.

3 Самозванцы проводящей системы

Дополнительные пучки проводящей системы

Нормальную сердечную деятельность обеспечивают вышеописанные элементы проводящей системы сердца, но при патологических процессах в сердце могут активироваться дополнительные пучки проводящей системы и примерять на себя роль основных. Дополнительные пучки в здоровом сердце не активны. При некоторых заболеваниях сердца они активизируются, что вызывает нарушения сердечной деятельности, проводимости. К таким «самозванцам», нарушающим нормальную сердечную возбудимость, относят пучок Кента (правый и левый), Джеймса.

Пучок Кента связывает верхние и нижние сердечные камеры. Пучок Джеймса связывает центр автоматизма 1 порядка с нижележащими отделами также в обход АВ-центра. Если эти пучки активны, они как бы «выключают» АВ-узел из работы, и возбуждение идет через них на желудочки намного быстрее, чем это положено в норме. Формируется так называемый обходной путь, по которому импульсация приходит в нижние сердечные камеры.

А поскольку путь прохождения импульса через добавочные пучки короче, чем в норме, желудочки возбуждаются раньше, чем должны — процесс возбуждения сердечной мышцы нарушается. Чаще такие нарушения фиксируются у мужчин (но женщины также могут их иметь) в виде синдрома WPW, либо при других сердечных проблемах — аномалии Эбштейна, пролапсе двустворчатого клапана. Активность таких «самозванцев» не всегда клинически выражена, особенно в молодом возрасте, может стать случайной ЭКГ-находкой.

А если клинические проявления патологической активации дополнительных трактов проводящей системы сердца присутствуют, то они проявляют себя в виде учащённого, неритмичного сердцебиения, ощущения провалов в области сердца, головокружения. Диагностируют такое состояние при помощи ЭКГ, холтеровского мониторирования. Бывает, что могут функционировать как нормальный центр проводящей системы — АВ-узел, так и дополнительный. В этом случае на ЭКГ-приборе будет регистрироваться оба пути импульсации: нормальный и патологический.

Тактика лечения пациентов с нарушениями проводящей системы сердца в виде активных дополнительных трактов индивидуальна в зависимости от клинических проявлений, тяжести заболевания. Лечение может быть как медикаментозным, так и хирургическим. Из хирургических методов на сегодняшний день популярен и наиболее эффективен метод разрушения зон патологической импульсации электрическим током при помощи специального катетера — радиочастотная абляция. Этот метод еще и щадящий, поскольку позволяет избежать операции на открытом сердце.

Проводящая система сердца отвечает за его главную функцию — сокращения. Она представлена несколькими узлами и проводящими волокнами. Правильное функционирование этой системы обеспечивает нормальный сердечный ритм.

Если же возникают какие-то нарушения, развиваются разного рода аритмии. В статье представлена система проведения импульсов по сердцу. Описано значение проводящей системы, её состояние в норме и при патологии.

Анатомия проводящей системы

Что такое проводящая система сердца? Это комплекс специализированных кардиомиоцитов, обеспечивающих распространение электрического импульса по миокарду. Благодаря этому реализуется основная функция сердца — сократительная.

Анатомия проводящей системы представлена следующими элементами:

  • синоатриальный узел (Кисс-Флака), расположенный в ушке правого предсердия;
  • пучок межпредсердного проведения, идущий к левому предсердию;
  • пучок межузлового проведения, идущий к следующему узлу;
  • атриовентрикулярный узел проводящей системы сердца (Ашоффа-Тавара), расположенный между правым предсердием и желудочком;
  • пучок Гиса, имеющий левую и правую ножки;
  • волокна Пуркинье.

Такое строение проводящей системы сердца обеспечивает охват каждого участка миокарда. Рассмотрим подробнее схему проводящей системы сердца человека.

Синоатриальный узел

Является главным элементом проводящей системы сердца, который называют водителем ритма. При нарушении его функции водителем ритма становится следующий по порядку узел. Синоатриальный узел располагается в стенке правого предсердия, между его ушком и отверстием верхней полой вены. САУ прикрыт внутренней сердечной оболочкой — эндокардом.

Узел имеет размеры 12х5х2 мм. К нему подходят симпатические и парасимпатические нервные волокна, которые обеспечивают регуляцию функции узла. САУ вырабатывает электрические импульсы — в диапазоне 60-80 за минуту. Именно такая нормальная частота сокращений сердца у здорового человека.

Также к проводящей системе сердца относятся пучки Бахмана, Венкебаха и Тореля.

Атриовентрикулярный узел

Этот элемент проводящей системы расположен в углу между основанием правого предсердия и межпредсердной перегородкой. Его размеры — 5х3 мм. Узел задерживает часть импульсов от водителя ритма и передаёт их на желудочки с частотой 40-60 в минуту.

Пучок Гиса

Это проводящий путь сердца, который обеспечивает связь между миокардом предсердий и желудочков. В межжелудочковой перегородке происходит его разветвление на две ножки, каждая из которых идёт к своему желудочку.

Длина общего ствола составляет от 8 до 18 мм. Он проводит импульсы с частотой 20-40 в минуту.

Волокна Пуркинье

Это концевая часть проводящей системы. Волокна отходят от ножек пучка Гиса и обеспечивают передачу импульсов на все участки миокарда желудочков. Частота передачи — не более 20 в минуту.

Функционирование проводящей системы

Как работает проводящая система сердца?

Вследствие раздражения САУ в нем происходит выработка электрического импульса. По трём проводящим пучкам он распространяется на оба предсердия и достигает АВ-узла. Здесь происходит задержка импульса, которая обеспечивает последовательность сокращений предсердий и желудочков.

Далее импульс переходит на пучок Гиса и волокна Пуркинье, которые подходят уже к сократительным клеткам. Здесь электрический импульс угасает. Слаженная деятельность всех элементов называется сердечным автоматизмом. Наглядно проводящую систему сердца можно увидеть в видео в этой статье.

Возможные нарушения

Под воздействием внешних и внутренних причин в проводящей системе могут возникать различные нарушения. Чаще они обусловлены органическими поражениями миокарда или при аномалиях проводящих путей сердца.

Нарушения проведения импульса бывают двух типов:

  • с ускорением проведения;
  • с замедлением проведения.

В первом случае развиваются различные тахиаритмии, во втором — брадиаритмии и блокады.

Нарушения проводимости предсердий

В данном случае страдает синоатриальный узел и межпредсердные/межузловые пучки.

Таблица. Нарушения проводимости предсердий:

Читайте также:  Дрф анализ крови что это
Форма Характеристика Инструкция по лечению
Предсердная тахикардия Не считается заболеванием. Наблюдается увеличение частоты сокращений до 100 в минуту. Обусловлено обычно внесердечными причинами — страх, напряжение, боль, лихорадка Специфического лечения не требует
Синдром слабости синусового узла Снижение способности САУ к генерации импульсов. Является причиной предсердной тахикардии, фибрилляции предсердий Лечение проводится антиаритмическими препаратами или установкой кардиостимулятора
Синоатриальная блокада Замедление или полное прекращение проведения импульсов от САУ к предсердиям. Выделяют три степени тяжести. Третья степень представлена полным прекращением функции САУ, в результате чего возникает асистолия или функция водителя ритма переходит к АВ-узлу. Причинами являются обезвоживание, передозировка лекарств Лечение симптоматическое, при тяжелой степени рекомендуется установка искусственного водителя ритма
Фибрилляция предсердий Нерегулярное сокращение отдельных участков миокарда предсердий, достигающее частоты 350-400 в минуту. Бывает приступообразной и постоянной. Чаще развивается на фоне органических заболеваний сердца Лечение проводится антиаритмическими препаратами
Трепетание предсердий Регулярное сокращение предсердий с частотой 250-350 в минуту. Также бывает приступообразным или постоянным, развивается на фоне органических поражений миокарда Лечение проводится антиаритмическими средствами

Предсердные нарушения проводимости возникают реже и протекают легче, чем нарушения внутрижелудочковой проводимости.

АВ-блокады

AV-проводимость — это процесс передачи импульса от САУ на желудочки сердца через АВ-узел. При замедлении или полном прекращении передачи импульса развиваются АВ-блокады.

Выделяют три степени этого состояния:

  1. Удлинение интервала P-Q более 0,2 с. Наблюдается при обезвоживании, передозировке сердечных гликозидов. Клинически не проявляется.
  2. Эта степень подразделяется на 2 типа — Мобитц 1 и Мобитц 2. В первом случае наблюдается постепенное удлинение интервала P-Q, пока не произойдет выпадение желудочкового комплекса. Во втором слечае желудочковый комплекс выпадает без предыдущего удлинения интервала P-Q. Причинами АВ-блокады второй степени являются органические поражения сердца.
  3. При третьей степени импульс от САУ на желудочки не проводится. Они сокращаются в собственном ритме под влиянием импульсов от волокон Пуркинье. Клиническая картина представлена частыми головокружениями, обмороками.
Читайте также:  Омега 3 против холестерина

Лечение при первой степени не требуется, при второй и третьей устанавливают кардиостимулятор.

Нарушение внутрижелудочкового проведения

В результате замедления проведения импульса по пучку Гиса возникает полная или неполная блокада его ножек. Неполная блокада клинически не проявляется, на ЭКГ имеются преходящие изменения. Полная блокада чаще встречается на правой ножке, чем на левой. Возникать может на фоне полного здоровья, либо при наличии органических поражений сердца.

Если желудочковая проводимость нарушена в сторону ускорения, возникают тахиаритмии.

Таблица. Виды желудочковых тахиаритмий:

Форма Характеристика Лечение
Пароксизмальная тахикардия Происходит учащение желудочковых сокращений до 140-200 в минуту. Возникает на фоне органических поражений миокарда. Проявляется головокружением, приступами потери сознания Лечение специфическое
Фибрилляция желудочков Частота сокращений миокарда желудочков до 280 в минуту Реанимация
Трепетание желудочков Хаотичный ритм, затем остановка кровообращения Реанимация

Если нарушена внутрижелудочковая проводимость, наблюдается более худший прогноз, чем при нарушении проведения по предсердиям.

Как определить

Для выявления нарушений проводимости сердца используют инструментальные методы диагностики и функциональные пробы. Диагностировать нарушения можно даже у плода.

Таблица. Методы определения сердечной проводимости:

Метод Характеристика
Кардиотокография Это метод, позволяющий оценить функцию сердца плода. Как проводится КТГ? Используется ультразвуковой датчик, который регистрирует частоту сердечных сокращений. Одновременно регистрируется тонус матки
Электрокардиография Основной метод, регистрирующий любые изменения проводимости сердца — это ЭКГ. Метод основан на регистрации специальным аппаратом электрических потенциалов сердца, затем осуществляется их графическая запись
УЗИ сердца Позволяет выявить изменения основных частей проводящей системы сердца, органические поражения миокарда
Чреспищеводное электрофизиологическое исследование Изучение сократимости сердца при воздействии на него физиологическими дозами тока. Как проводится ЧПЭФИ сердца? Для этого проводят по пищеводу электрод таким образом, чтобы его конец встал напротив левого желудочка. Затем подается электроток и записывается ответ миокарда на раздражение

Читайте также:  Инфаркт сетчатки глаза

На основании полученных данных устанавливается диагноз, определяется лечебная тактика.

Проводящая система сердца — это комплекс специализированных кардиомиоцитов, обеспечивающих последовательное и согласованное сокращение миокарда. При наличии органических заболеваний или при воздействии внешних причин нарушается физиология сокращений, возникают аритмии. Диагностика проводится с помощью инструментальных методов. Лечение зависит от вида аритмии.

Вопросы врачу

Добрый день. Меня часто беспокоят головокружения, чувство замирания сердца. А недавно потеряла сознание. Врач назначил мне обследование, в том числе велоэргометрию. Как проводится это исследование и для чего оно назначается?

Ирина, 35 лет, Ангара

Добрый день, Ирина. Велоэргометрия, или тредмил-тест — это функциональная проба, позволяющая оценить компенсаторные возможности миокарда. Применяется для определения скрытых нарушений ритма, ИБС.

Судя по вашим симптомам, врач подозревает у вас нарушение желудочковой проводимости. Пациенту предлагают сесть на специальный велосипед или беговую дорожку. Регистрируется время, за которое при физической нагрузке увеличится частота сокращений сердца.

Здравствуйте. У меня беременность 34 недели, ребенок шевелится меньше, чем положено. Акушер назначил мне КТГ плода — как проводят эту процедуру?

Добрый день, Анна. КТГ — это метод, оценивающий частоту сокращений сердца плода. Назначается при подозрении на внутриутробную гипоксию. Проводится с помощью специального ультразвукового датчика. Процедура абсолютно безболезненна и безопасна.


Комментарии
  1. Елена Петровна () Только что
    Спасибо Вам огромное! Полностью вылечила гипертонию с помощью NORMIO.
  2. Евгения Каримова () 2 недели назад
    Помогите!!1 Как избавиться от гипертонии? Может какие народные средства есть хорошие или что-нибудь из аптечных приобрести посоветуете???
  3. Дарья () 13 дней назад
    Ну не знаю, как по мне большинство препаратов - полная фигня, пустатая трата денег. Знали бы вы, сколько я уже перепробовала всего.. Нормально помог только NORMIO (кстати, по спец. программе почти бесплатно можно получить). Пила его 4 недели, уже после первой недели приема самочувствие улучшилось. С тех пор прошло уже 4 месяца, давление в норме, о гипертонии и не вспоминаю! Средство иногда снова пью 2-3 дня, просто для профилактики. А узнала про него вообще случайно, из этой статьи..

    P.S. Только вот я сама из города и у нас его в продаже не нашла, заказывала через интернет.
  4. Евгения Каримова () 13 дней назад
    Дарья, киньте ссылку на препарат!
    P.S. Я тоже из города ))
  5. Дарья () 13 дней назад
    Евгения Каримова, так там же в статье указана) Продублирую на всякий случай - официальный сайт NORMIO.
  6. Иван 13 дней назад
    Это далеко не новость. Об этом препарате уже все знают. А кто не знает, тех, видимо давление не мучает.
  7. Соня 12 дней назад
    А это не развод? Почему в Интернете продают?
  8. юлек36 (Тверь) 12 дней назад
    Соня, вы в какой стране живете? В интернете продают, потому-что магазины и аптеки ставят свою наценку зверскую. К тому-же оплата только после получения, то есть сначала получили и только потом заплатили. Да и в Интернете сейчас все продают - от одежды до телевизоров и мебели.
  9. Ответ Редакции 11 дней назад
    Соня, здравствуйте. Средство от гипертонии NORMIO действительно не реализуется через аптечную сеть и розничные магазины во избежание завышенной цены. На сегодняшний день оригинальный препарат можно заказать только на специальном сайте. Будьте здоровы!
  10. Соня 11 дней назад
    Извиняюсь, не заметила сначала информацию про наложенный платеж. Тогда все в порядке точно, если оплата при получении.
  11. александра 10 дней назад
    чтобы капли помогли? да ладно вам, люди, не дошла еще до этого промышленность
  12. Елена (Сыктывкар) 10 дней назад
    Случайно набрела на эту статью. И что я вижу!! Рекламируют наш NORMIO! Ну не в смысле мой, а в том плане, что я мужу его покупала. Он не знает, что я здесь пишу, но все-таки поделюсь. Это ж и моя радость, скорее даже полностью мое счастье! Короче, я вот тоже читала отзывы, смотрела как и что и заказала это средство. А то мой муж уже весь отчаялся, уже много лет было давление 180 на 110! Таблетки разные пил от этого у него с желудком проблемы были, а давление все равно было высокое. Решали чего дальше делать. А тут в общем начал NORMIO пить и теперь ура! Никаких проблем у него, давление в норме, всегда бодр и активен!
  13. Павел Солонченко 10 дней назад
    Подтверждаю, этот препарат действительно помогает! Вылечил свою гипертонию всего за 4 недели! До этого 4 года мучался от постоянного давления, головных болей и т.д. Спасибо большое!
  14. Юлия Л 10 дней назад
    С трудом верится... но столько людей говорит что работает, должно работать. Я завтра начинаю!
  15. Оксана (Ульяновск) 8 дней назад
    Хочу постараться избавиться от гипертонии побыстрее, а главное как-нибудь попроще и безболезненно, посоветуйте что-нибудь.
  16. Дмитрий (врач Кардиолог) 8 дней назад
    Валерия, лучший вариант - обратиться к врачу! Но если нет времени на поход в поликлинику, подойдет и NORMIO, который уже советовали выше. В последнее время многим его назначаю, результаты очень хорошие! Выздоравливайте.
  17. Оксана (Ульяновск) 8 дней назад
    Спасибо огромное за ответ, заказала!
  18. Наташа 5 дней назад
    У мужа гипертония, бегаем по врачам вместе. Люблю его, жизнь отдам за него, но никак не могу облегчить его страдания. Ладно, теперь Вы со своей историей появились, для нас появилась надежда. А то уже все перепробовали.
  19. Валера () 5 дней назад
    Совсем недавно хотел снова обратиться к врачам, уже к хирургу решился пойти, кругленькую сумму приготовил, но сейчас мне это не нужно! 2 месяца – и я здоров, прикиньте. Так что, народ, не дурите, никакие таблетки не по-мо-гут! Только это природное средство, других способов я не знаю, да и не хочу знать уже



Adblock detector