К белкам плазмы относится

  • 26-07-2019
  • 0 Просмотров
  • 0 комментариев
  • 0 Рейтинг

Рефераты и конспекты лекций по географии, физике, химии, истории, биологии. Универсальная подготовка к ЕГЭ, ГИА, ЗНО и ДПА!

Белки плазмы

Общее количество белков в плазме составляет 65-85 г / л, это наиболее концентрированный белковый и солевой раствор организма. С возрастом количество белков в плазме крови человека уменьшается до 60-67 г / л.

Белки плазмы крови — это генетически детерминирована гетерогенная система. В плазме обнаружено и идентифицировано более 100 белков, которые различаются по физико-химическим и функциональным свойствам. Среди них есть проферменте и ферменты, ингибиторы ферментов, гормоны, факторы коагуляции и антикоагулянты, транспортные белки, антитела, антитоксины и др..

Основными группами белков плазмы: альбумины (35-60 г / л), глобулины (25-35 г / л) и фибриноген (2-7 г / л). С помощью электрофореза в сыворотке было обнаружено пять главных фракций белков. Их относительные количества следующие: альбумины (54-58%), а1-глобулины (6-7%), а2-глобулины (8-9%), ß-глобулины (13-14%) и у-глобулины (11-12 %).

Первым электрофоретической методом, который использовался для распределения и идентификации белков, был метод электрофореза с подвижным рубежом. Электрофорез на бумаге дает картину распределения, подобную той, которую получают при использовании метода электрофореза с подвижным рубежом, но метод электрофореза на бумаге гораздо проще и, как правило, используется в клинических лабораториях. Методом электрофореза в крахмальном геле и методом имуноелектрофорезу обнаруживают около 30 и больше белков плазмы.

Вследствие имуноелектрофорезу белки разделяются не только по электрофоретической подвижностью, но и за их иммунологическими свойствами. Сначала проводят электрофорез на пластинах агаровой геля, затем — иммунологическую идентификацию полос. Для этого антисыворотки к белков плазмы помещают в длинную канавку, параллельную направлению электрофореза. Источником антител является сыворотка животных (лошадей, коз), иммунизированных к белкам плазмы.

В зонах контакта диффундирующих через агар белков, разделенных электрофорезом, и специфической антисыворотки образуются линии преципитации. Положение линий преципитации определяется электрофоретической подвижностью, скоростью диффузии, серологической специфичностью каждого из белков.

Экспериментально установлено, что альбумины, фибриноген и большинство а-и ß-глобулинов продуцируются, главным образом, печенью. Так, в печени человека ежедневно синтезируется 10-16 г альбуминов, то есть в среднем 150-200 мг на 1 кг массы тела. Поэтому в случае заболеваний печени наблюдается значительное снижение содержания альбуминов и некоторых глобулинов в крови. Синтез у-глобулинов проходит преимущественно в селезенке, лимфатических узлах и костном мозге.

Альбумины. Молекулярная масса альбуминов 69 000. Это наиболее высокодисперсные белки плазмы крови. Молекула альбумина образована полипептидной цепи, состоящей примерно из 580 остатков аминокислот, и имеет »17 дисульфидных связей. Методами электрофореза установлено, что альбумины — это гетерогенные белки, состоящие из нескольких (от 3 до 5) фракций. Кроме альбуминов в печени синтезируются преальбумины, отличающиеся от альбуминов меньшей молекулярной массой (61 000).

Главные функции альбуминов — участие в осмотической регуляции и транспортная функция.

Отек и шок — два самых распространенных синдромы, связанные с изменениями концентрации белков плазмы и нарушением водного баланса.

Благодаря большой плотности электрических зарядов и малой молекулярной массе молекулы альбумина имеют большую электрофоретической подвижностью и хорошую растворимость. Гидратационные слой создается вокруг них, обеспечивает 75-80% всего онкотического давления, обусловленного белками плазмы. В случае уменьшения концентрации белков плазмы в 55-50 г / л, в том числе альбуминов до 22-25 г / л, например во время голодания, уменьшается связывание воды плазмой, является одной из важных причин перехода воды в ткани и образование отека. Лишь 40% альбуминов имеющиеся в кровяном русле, остальные находятся в составе внеклеточной тканевой жидкости, главным образом, мышц, кожи и кишечника. Около 5% альбуминов за 1 час выходят из кровяного русла и возвращаются с лимфой через грудной лимфатический проток в систему кровообращения.

Наряду с участием в регуляции онкотического давления, преальбумины и альбумины играют важную роль, участвуя в транспорте различных веществ, большинство из которых плохо растворимые в воде. Альбумины необходимы для нормального метаболизма липидов. Особенно важна функция альбуминов — перенос свободных жирных кислот из печени в периферические ткани. Альбумины связывают также билирубин, обеспечивая его перенос в печени, где последний соединяется с глюкуроновой кислотой и выводится с желчью. Концентрация в плазме Ca2 +, стероидных гормонов, триптофана и других веществ регулируется некоторой степени вследствие связывания их с альбуминами.

Наконец, многие лекарственные препараты, такие как сульфаниламиды, антибиотики, салицилаты и т.д., транспортируются, протеидизуючись альбуминами.

Таким образом, альбумины — это полифункциональная система, поскольку, кроме резервной и пластической функций, они буферные свойства, поддерживающие постоянство онкотического давления, осуществляют транспортные и дезинтоксикационные функции.

Глобулины. Молекулярная масса глобулинов в среднем составляет 160 000-180 000. В зависимости от условий электрофореза выделено пять и более фракций глобулинов (см. табл. 20), а методом имуноелект-рофорезу — более 30.

Фракции а1-глобулинов и а2-глобулинов характеризуются значительным содержанием углеводов, среди которых преобладают гексозы, поменьше гексозамина и еще меньше сиаловых кислот и фруктозы. Наибольшее содержание углеводов в гаптоглобина, который содержит около 95 молей углеводов на 1 моль гликопротеина. Он входит во фракцию а2-глобулинов и образует с гемоглобином специфические стабильные комплексы. Эти комплексы образуются in vivo в результате внутрисосудистого гемолиза эритроцитов. Вследствие высокой молекулярной массы комплексы не могут экскретировать почками, это, с одной стороны, предотвращает выделение железа с мочой, а с другой — защищает почки от «повреждения» гемоглобином. Комплексы гемоглобина с гаптоглобина разрушаются ретикулоэндотелиальными клетками, после чего глобин испытывает расщепление, гем вследствие распада экскретируется в виде желчных пигментов, а железо может использоваться снова для синтеза гема. У больных различными формами гемолитической анемии наблюдается низкий уровень гаптоглобина.

В сыворотке крови человека найден белок с молекулярной массой около 1 млн. Он характеризуется высоким содержанием фосфора и углеводов и относительно небольшим количеством азота (12,5-14,2%), что позволяет отнести его к гликопротеинов. Этот белок при наличии комплемента и солей магния способен повышать устойчивость организма к инфекциям, а также лучевой болезни. Благодаря способности этого гликопротеина разрушать бактерии его назвали пропердина (perdere — разрушать, лат.). Поскольку пропердин активно действует в комплексе с комплементом и солями магния, весь комплекс назвали пропердиновый системой.

ß-глобулинов фракция состоит из различных белков, включая ли-попротеины. Одним из компонентов этой фракции является белок трансферрин, который участвует в регуляции концентрации свободного железа в плазме, предотвращая избыточное накопление железа в тканях и потере его с мочой. Он также взаимодействует с медью и цинком. Значительное повышение концентрации трансферрина наблюдается в плазме беременных женщин и больных с недостаточностью железа.

В целом роль глобулинов связана с защитными реакциями организма. Изучение природы антител показало, что они глобулинами, к тому же многие из них относятся к у-глобулинов и называются иммуноглобулинами. Известно пять основных классов иммуноглобулинов, которые отличаются некоторыми особенностями структуры и биологическими свойствами.

у-Глобулины широко используются в практике здравоохранения, особенно в случае многих инфекционных заболеваниях. С помощью электрофореза и иммунобиологических исследований выявлено, что во фракцию у-глобулинов входит более 20 антител.

Большинство белков в плазме имеющиеся в виде комплексов, биологическое значение которых зависит как от белка, так и от небелкового компонента, с которым он комплексируется.

Липиды крови, в том числе триацилглицеринов, фосфолипиды, не-этерифицированные жирные кислоты (НЭЖК), холестерин, стероидные гормоны, некоторые липовитамины т.д., имеющиеся в растворенном состоянии благодаря сочетанию их с белками плазмы в виде комплексов — липопротеинов (см. Структура и функции сложных белков).

Вследствие многих патологических состояний может изменяться количественное соотношение между различными белковыми фракциями крови, даже при отсутствии изменений в содержании общего белка — так называемая дис-протеинемия. Иногда в крови появляются необычные белковые фракции или отдельные белки, которых нет в норме (парапротеинемия). Такими белками, например, С-реактивный белок, криоглобулины т.д..

Диспротеинемия и парапротеинемия — это, например, признаки лучевой болезни.

Выявлен ряд заболеваний, в том числе наследственных, связанных с недостаточным синтезом тех или иных белков крови. Например, во многих новорожденных наблюдается гипо-и агаммаглобулинемия, что сопровождается снижением иммунитета. Встречается также приобретенная гипогаммаглобулинемия. В этих случаях лечение заключается в систематическом введении иммунных у-глобулинов.

Читайте также:  Инфаркт риск смерти

С-реактивный белок содержится в плазме взрослого человека в концентрациях менее 1 мг/100 мл. Однако его концентрация значительно увеличивается после острых инфекций. Название этого белка связана с его способностью образовывать преципитаты с полисахаридами группы С пневмококков в присутствии Ca2 +. Допускают, что этот белок способствует фагоцитозу.

Криоглобулины — белки сыворотки, которые редко встречаются и имеющие редкое свойство спонтанно выпадать в осадок, образовывать гель или даже кристаллизоваться при охлаждении сыворотки. Появляются криоглобулины у больных миеломой и у больных ревматическим артритом. Эти белки отнесены к у-глобулинов. Выяснено, что один из криоглобулинов оказался идентичным гликопротеина фибронектина, который связан с поверхностью фибробластов. Этот белок широко распространен в соединительной ткани, входя в состав миофибрилл соединительной ткани. Хотя возможная роль фибронектина в процессе свертывания крови окончательно не установлена, известно, что образование поперечных связей между молекулами этого белка катализируется активированным фактором ХИИИ (а) свертывающей системы крови.

Фибриноген — обладает свойствами глобулинов и вследствие электрофореза находится между фракциями ß-и у-глобулинов. Молекулярная масса фибриногена составляет 330 000-340 000.

Молекула фибриногена содержит шесть полипептидных цепей и является диммером, который состоит из трех пар полипептидных цепей, связанных дисульфидными мостиками. Фибриноген — это гликопротеин, в состав которого входит галактоза, манноза, гексозамины и сиаловые кислоты. Эти компоненты играют большую роль при преобразовании фибриногена в фибрин.

Содержание фибриногена в крови здоровых людей в среднем составляет 3,0-3,3 г / л. Его концентрация повышается в период беременности, а также при заболеваниях воспалительного характера, при деструктивных процессов, злокачественных новообразований, туберкулеза и других патологических состояний. Снижение содержания фибриногена наблюдается вследствие заболеваний печени, отравление фосфором, фосфорорганических соединениями и другими токсичными веществами.

Фибриноген — белок, который быстро восстанавливается, период его распада от 3 до 8 суток.

Наряду с плазмоспецифичнимы белками крови, в ней присутствуют соединения белковой природы, которые попадают из других тканей и органов. К последним относятся гормоны белковой природы: инсулин и глюкагон, го-надо-и тиреотропного гормона гипофиза и др.. Постоянной составной частью крови является ферменты. Ферменты, присутствующие в плазме, освобождаются из клеток крови и других тканей в результате естественного лизиса последних. Большинство ферментов плазмы не выполняют метаболических функций, за исключением ферментов, участвующих в свертывании крови и функционирующих в системе комплемента.

Вместе с плазмоспецифичнимы ферментами в крови содержится ряд органоспецифических ферментов, активность которых является показателем некоторых патологических состояний. Так, уровень сывороточной амилазы повышается при острых панкреатитов, в случае рака простаты. Значительно повышается активность кислой фосфатазы вследствие воспаления, она снижается при эффективной терапии. В случае заболеваний костной ткани повышается активность щелочной фосфатазы, которая определяется при рН 9.

Установлено, что уровень АсАТ, лактатдегидрогеназы и некоторых других ферментов в плазме имеет определенное диагностическое значение при поражении миокарда и может служить прогностическим тестом при терапии заболеваний сердца. В случае заболевания печени также происходит повышение уровня этих и некоторых других ферментов, например альдолазы.

В целом индивидуальных белков в крови насчитывается несколько сотен, однако не все они идентифицированы, не установлено их структуру и биологические функции.

В плазме крови содержится 7% всех белков организма при концентрации 60 — 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

• Белки плазмы образуют важнейшую буферную систему крови и поддерживают pH крови в пределах 7,37 — 7,43.

• Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) выполняют транспортную функцию.

• Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.

• Белки плазмы крови являются резервом аминокислот для организма.

• Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55 — 65%), α1-глобулины (2 — 4%), α2-глобулины (6 — 12%), β-глобулины (8 — 12%) и н-глобулины (12 — 22%) (рис. 14-19).

Рис. 14-19. Электрофореграмма (А) и денситограмма (Б) белков сыворотки крови.

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16 — 17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, н-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин — клетки почки.

Для многих белков плазмы, например, альбумина, α1-антитрипсина, гаптоглобина, трансферрина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эндоцитоза «состарившиеся» белки поступают в клетки печени, где разрушаются. Т 1 /2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой (рис. 14-20).

Рис. 14-20. Протеинограммы белков сыворотки крови. а — в норме; б — при нефротическом синдроме; в — при гипогаммаглобулинемии; г — при циррозе печени; д — при недостатке α1-антитрипсина; е — при диффузной гипергаммаглобулинемии.

Такие изменения называют диспротеинемиями, однако их интерпретация часто имеет относительную диагностическую ценность. Например, характерное для нефротического синдрома снижение альбуминов, α1— и y-глобулинов и увеличение α2— и β-глобулинов отмечают и при некоторых других заболеваниях, сопровождающихся потерей белков. При снижении гуморального иммунитета уменьшение фракции y-глобулинов свидетельствует об уменьшении содержания основного компонента иммуноглобулинов — IgG, но не отражает динамику изменений IgA и IgM.

Содержание некоторых белков в плазме крови может резко увеличиваться при острых воспалительных процессах и некоторых других патологических состояниях (травмы, ожоги, инфаркт миокарда). Такие белки называют белками острой фазы, так как они принимают участие в развитии воспалительной реакции организма. Основной индуктор синтеза большинства белков острой фазы в гепатоцитах — полипептид интерлейкин-1, освобождающийся из мононуклеарных фагоцитов. К белкам острой фазы относят С-реактивный белок, называемый так, потому что он взаимодействует с С-полисахаридом пневмококков, α1-антитрипсин, гаптоглобин, кислый гликопротеин, фибриноген. Известно, что С-реактивный белок может стимулировать систему комплемента, и его концентрация в крови, например, при обострении ревматоидного артрита может возрастать в 30 раз по сравнению с нормой. Белок плазмы крови α1-антитрипсин может инактивировать некоторые протеазы, освобождающиеся в острой фазе воспаления.

Содержание некоторых белков в плазме крови и их функции представлены в таблице 14-2.

Таблица 14-2. Содержание и функции некоторых белков плазмы крови

Концентрация в сыворотке крови, г/л

Транспорт тироксина и трийодтиронина

Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот

Фактор II свёртывания крови

Транспорт кортизола, кортикостерона, прогестерона

Транспорт тироксина и трийодтиронина

Транспорт ионов меди, оксидоредуктаза

Ингибитор плазменных протеаз

Ингибитор плазменных протеиназ, транспорт цинка

Витамин D связывающий белок

Транспорт ионов железа

Фактор I свёртывания крови

Транспорт витамина В12

Глобулин связывающий белок

Транспорт тестостерона и эстрадиола

2+ , Сu 2+ , Zn 2+ . Около 40% альбумина содержится в крови и остальные 60% в межклеточной жидкости, однако его концентрация в плазме выше, чем в межклеточной жидкости, поскольку объём последней превышает объём плазмы в 4 раза.

Читайте также:  Сердечная астма это тесты

Благодаря относительно небольшой молекулярной массе и высокой концентрации альбумин обеспечивает до 80% осмотического давления плазмы. При гипоальбуминемии осмотическое давление плазмы крови снижается. Это приводит к нарушению равновесия в распределении внеклеточной жидкости между сосудистым руслом и межклеточным пространством. Клинически это проявляется как отёк. Относительное снижение объёма плазмы крови сопровождается снижением почечного кровотока, что вызывает стимуляцию системы ренин-ангиотензин-альдостерон, обеспечивающей восстановление объёма крови (см. раздел 11). Однако при недостатке альбумина, который должен удерживать Nа + , другие катионы и воду, вода уходит в межклеточное пространство, усиливая отёки.

Гипоальбуминемия может наблюдаться и в результате снижения синтеза альбуминов при заболеваниях печени (цирроз), при повышении проницаемости капилляров, при потерях белка из-за обширных ожогов или катаболических состояний (тяжёлый сепсис, злокачественные новообразования), при нефротическом синдроме, сопровождающемся альбуминурией, и голодании. Нарушения кровообращения, характеризующиеся замедлением кровотока, приводят к увеличению поступления альбумина в межклеточное пространство и появлению отёков. Быстрое увеличение проницаемости капилляров сопровождается резким уменьшением объёма крови, что приводит к падению АД и клинически проявляется как шок.

Альбумин — важнейший транспортный белок. Он транспортирует свободные жирные кислоты (см. раздел 8), неконъюгированный билирубин (см. раздел 13), Са 2+ , Сu 2+ , триптофан, тироксин и трийодтиронин (см. раздел 11). Многие лекарства (аспирин, дикумарол, сульфаниламиды) связываются в крови с альбумином. Этот факт необходимо учитывать при лечении заболеваний, сопровождающихся гипоальбуминемией, так как в этих случаях повышается концентрация свободного лекарства в крови. Кроме того, следует помнить, что некоторые лекарства могут конкурировать за центры связывания в молекуле альбумина с билирубином и между собой.

Транстиретин (преальбумин) называют тироксинсвязывающим преальбумином. Это белок острой фазы. Транстиретин относят к фракции альбуминов, он имеет тетрамерную молекулу. Он способен присоединять в одном центре связывания ретинолсвязывающий белок, а в другом — до двух молекул тироксина и трийодтиронина. Соединение с этими лигандами происходит независимо друг от друга. В транспорте последних транстиретин играет существенно меньшую роль по сравнению с тироксинсвязывающим глобулином.

α1-Антитрипсин относят к α1-глобулинам. Он ингибирует ряд протеаз, в том числе фермент эластазу, освобождающийся из нейтрофилов и разрушающий эластин альвеол лёгких. При недостаточности α1-антитрипсина могут возникнуть эмфизема лёгких (см. раздел 15) и гепатит, приводящий к циррозу печени. Существует несколько полиморфных форм α1-антитрипсина, одна из которых является патологической. У людей, гомозиготных по двум дефектным аллелям гена антитрипсина, в печени синтезируется α1-антитрипсин, который образует агрегаты, разрушающие гепатоциты. Это приводит к нарушению секреции такого белка гепатоцитами и к снижению содержания α1-антитрипсина в крови.

Гаптоглобин составляет примерно четверть всех α2-глобулинов. Гаптоглобин при внутрисосудистом гемолизе эритроцитов образует комплекс с гемоглобином, который разрушается в клетках РЭС. Если свободный гемоглобин, имеющий молекулярную массу 65 кД, может фильтроваться через почечные клубочки или агрегировать в них, то комплекс гемоглобин-гаптоглобин имеет слишком большую молекулярную массу (155 кД), чтобы пройти через гломерулы. Следовательно, образование такого комплекса предотвращает потери организмом железа, содержащегося в гемоглобине. Определение содержания гаптоглобина имеет диагностическое значение, например, снижение концентрации гаптоглобина в крови наблюдают при гемолитической анемии. Это объясняют тем, что при Т1/2 гаптоглобина, составляющем 5 дней, и Т 1 /2 комплекса гемоглобин-гаптоглобин (около 90 мин) увеличение поступления свободного гемоглобина в кровь при гемолизе эритроцитов вызовет резкое снижение содержания свободного гаптоглобина в крови.

Гаптоглобин относят к белкам острой фазы, его содержание в крови повышается при острых воспалительных заболеваниях.

Информация о некоторых других белках плазмы крови, представленных в табл. 14-2, имеется в соответствующих разделах учебника.

Тема 1. БИОЛОГИЧЕСКАЯ РОЛЬ БЕЛКОВЫХ И НЕБЕЛКОВЫХ КОМПОНЕНТОВ ПЛАЗМЫ КРОВИ.

Практическая значимость темы. Кровь является важнейшим и наиболее доступным объектом биохимического исследования. Наиболее изученные компоненты крови — это гемоглобин, альбумин, иммуноглобулины и разнообразные факторы свёртывания. При различных заболеваниях наблюдаются изменения уровня белков в плазме; эти изменения можно обнаружить при электрофорезе. Важным диагностическим признаком при некоторых патологических состояниях служит повышение активности некоторых ферментов плазмы крови. Определение содержания небелковых компонентов плазмы (глюкоза, мочевина, холестерол, билирубин и др.) также используется в диагностике заболеваний.

Цель занятия. После изучения данной темы студент должен знать состав и биологическую роль различных групп белков, небелковых азотистых компонентов (остаточного азота), безазотистых органических соединений и минеральных веществ, входящих в состав плазмы крови; уметь применять полученные знания при решении теоретических и практических задач.

Исходный уровень знаний.

  1. Строение и биологические функции аминокислот и белков, жирных кислот и липидов, моно- и полисахаридов.
  2. Участие минеральных веществ в процессах жизнедеятельности.
  3. Кислотно-основные свойства биологических макромолекул.
  4. Гидрофильные и гидрофобные свойства биологических макромолекул.
  5. Механизмы регуляции активности ферментов.

Общая характеристика.

Кровь — жидкая подвижная ткань, циркулирующая в замкнутой системе кровеносных сосудов, транспортирующая различные химические вещества к органам и тканям, и осуществляющая интеграцию метаболических процессов, протекающих в различных клетках.

Кровь состоит из плазмы и форменных элементов (эритроцитов, лейкоцитов и тромбоцитов). Сыворотка крови отличается от плазмы отсутствием фибриногена. 90% плазмы крови составляет вода, 10% — сухой остаток, в состав которого входят белки, небелковые азотистые компоненты (остаточный азот), безазотистые органические компоненты и минеральные вещества.

Белки плазмы крови.

Плазма крови содержит сложную многокомпонентную (более 100) смесь белков, различающихся по происхождению и функциям. Большинство белков плазмы синтезируется в печени. Иммуноглобулины и ряд других защитных белков иммунокомпетентными клетками.

Содержание общего белка в сыворотке крови здорового человека составляет 65 — 85 г/л (в плазме крови этот показатель на 2 – 4 г/л выше за счёт фибриногена).

1.2.1. Белковые фракции. При помощи высаливания белков плазмы можно выделить альбуминовую и глобулиновую фракции. В норме соотношение этих фракций составляет 1,5 – 2,5. Использование метода электрофореза на бумаге позволяет выявить 5 белковых фракций (в порядке убывания скорости миграции): альбумины, α1-, α2-, β- и γ-глобулины. При использовании более тонких методов фракционирования в каждой фракции, кроме альбуминовой, можно выделить целый ряд белков (содержание и состав белковых фракций сыворотки крови см. рисунок 1).


Рисунок 1. Электрофореграмма белков сыворотки крови и состав белковых фракций.

Альбумины – белки с молекулярной массой около 70000 Да. Благодаря гидрофильности и высокому содержанию в плазме играют важную роль в поддержании коллоидно-осмотического (онкотического) давления крови и регуляции обмена жидкостей между кровью и тканями. Выполняют транспортную функцию: осуществляют перенос свободных жирных кислот, желчных пигментов, стероидных гормонов, ионов Са 2+ , многих лекарств. Альбумины также служат богатым и быстро реализуемым резервом аминокислот.

α1-Глобулины:

  • Кислый α1-гликопротеин (орозомукоид) – содержит до 40% углеводов, изоэлектрическая точка его находится в кислой среде (2,7). Функция этого белка до конца не установлена; известно, что на ранних стадиях воспалительного процесса орозомукоид способствует образованию коллагеновых волокон в очаге воспаления (Я.Мусил, 1985).
  • α1-Антитрипсин – ингибитор ряда протеаз (трипсина, химотрипсина, калликреина, плазмина). Врождённое снижение содержания α1-антитрипсина в крови может быть фактором предрасположенности к бронхо-лёгочным заболеваниям, так как эластические волокна лёгочной ткани особенно чувствительны к действию протеолитических ферментов.
  • Ретинолсвязывающий белок осуществляет транспорт жирорастворимого витамина А.
  • Тироксинсвязывающий белок – связывает и транспортирует иодсодержащие гормоны щитовидной железы.
  • Транскортин – связывает и транспортирует глюкокортикоидные го рмоны (кортизол, кортикостерон).

α2-Глобулины:

  • Гаптоглобины (25% α2-глобулинов) – образуют стабильный комплекс с гемоглобином, появляющимся в плазме в результате внутрисосудистого гемолиза эритроцитов. Комплексы гаптоглобин-гемоглобин поглощаются клетками РЭС, где гем и белковые цепи подвергаются распаду, а железо повторно используется для синтеза гемоглобина. Тем самым предотвращается потеря железа организмом и повреждение почек гемоглобином.
  • Церулоплазмин – белок, содержащий ионы меди (одна молекула церулоплазмина содержит 6-8 ионов Cu 2+ ), которые придают ему голубую окраску. Является транспортной формой ионов меди в организме. Обладает оксидазной активностью: окисляет Fe 2+ в Fe 3+ , что обеспечивает связывание железа трансферрином. Способен окислять ароматическиеамины, участвует в обмене адреналина, норадреналина, серотонина.
Читайте также:  Соэ 2 у ребенка форум

β-Глобулины:

  • Трансферрин – главный белок β-глобулиновой фракции, участвует в связывании и транспорте трёхвалентного железа в различные ткани, особенно в кроветворные. Трансферрин регулирует содержание Fe 3+ в крови, предотвращает избыточное накопление и потерю с мочой.
  • Гемопексин – связывает гем и предотвращает его потерю почками. Комплекс гем-гемопексин улавливается из крови печенью.
  • С-реактивный белок (С-РБ) – белок, способный преципитировать (в присутствии Са 2+ ) С-полисахарид клеточной стенки пневмококка. Биологическая роль его определяется способностью активировать фагоцитоз и ингибировать процесс агрегации тромбоцитов. У здоровых людей концентрация С-РБ в плазме ничтожно мала и стандартными методами не определяется. При остром воспалительном процессе она увеличивается более чем в 20 раз, в этом случае С-РБ обнаруживается в крови. Исследование С-РБ имеет преимущество перед другими маркерами воспалительного процесса: определением СОЭ и подсчётом числа лейкоцитов. Данный показатель более чувствителен, его увеличение происходит раньше и после выздоровления быстрее возвращается к норме.

γ-Глобулины:

  • Иммуноглобулины (IgA, IgG, IgM, IgD, IgE) представляют собой антитела, вырабатываемые организмом в ответ на введение чужеродных веществ с антигенной активностью. Подробнее об этих белках см. 1.2.5.

1.2.2. Количественные и качественные изменения белкового состава плазмы крови. При различных патологических состояниях белковый состав плазмы крови может изменяться. Основными видами изменений являются:

  • Гиперпротеинемия — увеличение содержания общего белка плазмы. Причины: потеря большого количества воды (рвота, диарея, обширные ожоги), инфекционные заболевания (за счёт увеличения количества γ-глобулинов).
  • Гипопротеинемия — уменьшение содержания общего белка в плазме. Наблюдается при заболеваниях печени (вследствие нарушения синтеза белков), при заболеваниях почек (вследствие потери белков с мочой), при голодании (вследствие недостатка аминокислот для синтеза белков).
  • Диспротеинемия — изменение процентного соотношения белковых фракций при нормальном содержании общего белка в плазме крови, например, снижение содержания альбуминов и увеличение содержания одной или нескольких глобулиновых фракций при различных воспалительных заболеваниях.
  • Парапротеинемия — появление в плазме крови патологических иммуноглобулинов — парапротеинов, отличающихся от нормальных белков по физико-химическим свойствам и биологической активности. К таким белкам относятся, например, криоглобулины, образующие друг с другом преципитаты при температуре ниже 37° С. Парапротеины обнаруживаются в крови при макроглобулинемии Вальденстрема, при миеломной болезни (в последнем случае они могут преодолевать почечный барьер и обнаруживаться в моче как белки Бенс-Джонса). Парапротеинемия, как правило, сопровождается гиперпротеинемией.

1.2.3. Липопротеиновые фракции плазмы крови. Липопротеины — сложные соединения, осуществляющие транспорт липидов в крови. В состав их входят: гидрофобное ядро, содержащее триацилглицеролы и эфиры холестерола, и амфифильная оболочка, образованная фосфолипидами, свободным холестеролом и белками-апопротеинами (рисунок 2). В плазме крови человека содержатся следующие фракции липопротеинов:


Рисунок 2. Схема строения липопротеина плазмы крови.

  • Липопротеины высокой плотности или α-липопротеины, так как при электрофорезе на бумаге они движутся вместе с α-глобулинами. Содержат много белков и фосфолипидов, транспортируют холестерол из периферических тканей в печень.
  • Липопротеины низкой плотности или β-липопротеины, так как при электрофорезе на бумаге они движутся вместе с β-глобулинами. Богаты холестеролом; транспортируют его из печени в периферические ткани.
  • Липопротеины очень низкой плотности или пре-β-липопротеины (на электрофореграмме расположены между α- и β-глобулинами). Служат транспортной формой эндогенных триацилглицеролов, являются предшественниками липопротеинов низкой плотности.
  • Хиломикроны — электрофоретически неподвижны; в крови, взятой натощак, отсутствуют. Являются транспортной формой экзогенных (пищевых) триацилглицеролов.

1.2.4. Белки острой фазы воспаления. Это белки, содержание которых увеличивается в плазме крови при остром воспалительном процессе. К ним относятся, например, следующие белки:

  1. гаптоглобин;
  2. церулоплазмин;
  3. С-реактивный белок;
  4. α1-антитрипсин;
  5. фибриноген (компонент свёртывающей системы крови; см. 2.2.2).

Скорость синтеза этих белков увеличивается прежде всего за счёт снижения образования альбуминов, трансферрина и альбуминов (небольшая фракция белков плазмы, обладающая наибольшей подвижностью при диск-электрофорезе, и которой соответствует полоса на электрофореграмме перед альбуминами), концентрация которых при остром воспалении снижается.

Биологическая роль белков острой фазы: а) все эти белки являются ингибиторами ферментов, освобождаемых при разрушении клеток, и предупреждают вторичное повреждение тканей; б) эти белки обладают иммунодепрессорным действием (В.Л.Доценко, 1985).

1.2.5. Защитные белки плазмы крови. К белкам, выполняющим защитную функцию, относятся иммуноглобулины и интерфероны.

Иммуноглобулины (антитела) — группа белков, вырабатываемых в ответ на попадание в организм чужеродных структур (антигенов). Они синтезируются в лимфоузлах и селезёнке лимфоцитами В. Выделяют 5 классов иммуноглобулинов — IgA, IgG, IgM, IgD, IgE.


Рисунок 3.Схема строения иммуноглобулинов (серым цветом показана вариабельная область, не закрашена — константная область).

Молекулы иммуноглобулинов имеют единый план строения. Структурную единицу иммуноглобулина (мономер) образуют четыре полипептидные цепи, соединённые между собой дисульфидными связями: две тяжёлые (цепи Н) и две лёгкие (цепи L) (см. рисунок 3). IgG, IgD и IgЕ по своей структуре, как правило, являются мономерами, молекулы IgM построены из пяти мономеров, IgA состоят из двух и более структурных единиц, или являются мономерами.

Белковые цепи, входящие в состав иммуноглобулинов, можно условно разделить на специфические домены, или области, имеющие определённые структурные и функциональные особенности.

N-концевые участки как L-, так и Н-цепей называются вариабельной областью (V), так как их структура характеризуется существенными различиями у разных классов антител. Внутри вариабельного домена имеются 3 гипервариабельных участка, отличающихся наибольшим разнообразием аминокислотной последовательности. Именно вариабельная область антител ответственна за связывание антигенов по принципу комплементарности; первичная структура белковых цепей в этой области определяет специфичность антител.

С-концевые домены Н- и L-цепей обладают относительно постоянной первичной структурой в пределах каждого класса антител и называются константной областью (С). Константная область определяет свойства различных классов иммуноглобулинов, их распределение в организме, может принимать участие в запуске механизмов, вызывающих уничтожение антигенов.

Интерфероны — семейство белков, синтезируемых клетками организма в ответ на вирусную инфекцию и обладающих противовирусным эффектом. Различают несколько типов интерферонов, обладающих специфическим спектром действия: лейкоцитарный (α-интерферон), фибробластный (β-интерферон) и& иммунный (γ-интерферон). Интерфероны синтезируются и секретируются одними клетками и проявляют свой эффект, воздействуя на другие клетки, в этом отношении они подобны гормонам. Механизм действия интерферонов показан на рисунке 4.


Рисунок 4.Механизм действия интерферонов (Ю.А.Овчинников, 1987).

Связываясь с клеточными рецепторами, интерфероны индуцируют синтез двух ферментов — 2′,5′-олигоаденилатсинтетазы и протеинкиназы, вероятно, за счет инициации транскрипции соответствующих генов. Оба образующихся фермента проявляют свою активность в присутствии двухцепочечных РНК, а именно такие РНК являются продуктами репликации многих вирусов или содержатся в их вирионах. Первый фермент синтезирует 2′,5′-олигоаденилаты (из АТФ), которые активируют клеточную рибонуклеазу I; второй фермент фосфорилирует фактор инициации трансляции IF2. Конечным результатом этих процессов является ингибирование биосинтеза белка и размножения вируса в инфицированной клетке (Ю.А.Овчинников, 1987).

1.2.6. Ферменты плазмы крови. Все ферменты, содержащиеся в плазме крови, можно разделить на три группы:

  1. секреторные ферменты — синтезируются в печени, выделяются в кровь, где выполняют свою функцию (например, факторы свёртывания крови);
  2. экскреторные ферменты — синтезируются в печени, в норме выделяются с желчью (например, щелочная фосфатаза), их содержание и активность в плазме крови возрастает при нарушении оттока желчи;
  3. индикаторные ферменты — синтезируются в различных тканях и попадают в кровь при разрушении клеток этих тканей. В разных клетках преобладают различные ферменты, поэтому при повреждении того или иного органа в крови появляются характерные для него ферменты. Это может быть использовано в диагностике заболеваний.

Например, при повреждении клеток печени (гепатит) в крови возрастает активность аланинаминотраноферазы (АЛТ), аспартатаминотрансферазы (ACT), изофермента лактатдегидрогеназы ЛДГ5, глутаматдегидрогеназы, орнитинкарбамоилтрансферазы.

При повреждении клеток миокарда (инфаркт) в крови возрастает активность аспартатаминотрансферазы (ACT), иэофермента лактатдегидрогеназы ЛДГ1, изофермента креатинкиназы MB.

При повреждении клеток поджелудочной железы (панкреатит) в крови возрастает активность трипсина, α-амилазы, липазы.


Комментарии
  1. Елена Петровна () Только что
    Спасибо Вам огромное! Полностью вылечила гипертонию с помощью NORMIO.
  2. Евгения Каримова () 2 недели назад
    Помогите!!1 Как избавиться от гипертонии? Может какие народные средства есть хорошие или что-нибудь из аптечных приобрести посоветуете???
  3. Дарья () 13 дней назад
    Ну не знаю, как по мне большинство препаратов - полная фигня, пустатая трата денег. Знали бы вы, сколько я уже перепробовала всего.. Нормально помог только NORMIO (кстати, по спец. программе почти бесплатно можно получить). Пила его 4 недели, уже после первой недели приема самочувствие улучшилось. С тех пор прошло уже 4 месяца, давление в норме, о гипертонии и не вспоминаю! Средство иногда снова пью 2-3 дня, просто для профилактики. А узнала про него вообще случайно, из этой статьи..

    P.S. Только вот я сама из города и у нас его в продаже не нашла, заказывала через интернет.
  4. Евгения Каримова () 13 дней назад
    Дарья, киньте ссылку на препарат!
    P.S. Я тоже из города ))
  5. Дарья () 13 дней назад
    Евгения Каримова, так там же в статье указана) Продублирую на всякий случай - официальный сайт NORMIO.
  6. Иван 13 дней назад
    Это далеко не новость. Об этом препарате уже все знают. А кто не знает, тех, видимо давление не мучает.
  7. Соня 12 дней назад
    А это не развод? Почему в Интернете продают?
  8. юлек36 (Тверь) 12 дней назад
    Соня, вы в какой стране живете? В интернете продают, потому-что магазины и аптеки ставят свою наценку зверскую. К тому-же оплата только после получения, то есть сначала получили и только потом заплатили. Да и в Интернете сейчас все продают - от одежды до телевизоров и мебели.
  9. Ответ Редакции 11 дней назад
    Соня, здравствуйте. Средство от гипертонии NORMIO действительно не реализуется через аптечную сеть и розничные магазины во избежание завышенной цены. На сегодняшний день оригинальный препарат можно заказать только на специальном сайте. Будьте здоровы!
  10. Соня 11 дней назад
    Извиняюсь, не заметила сначала информацию про наложенный платеж. Тогда все в порядке точно, если оплата при получении.
  11. александра 10 дней назад
    чтобы капли помогли? да ладно вам, люди, не дошла еще до этого промышленность
  12. Елена (Сыктывкар) 10 дней назад
    Случайно набрела на эту статью. И что я вижу!! Рекламируют наш NORMIO! Ну не в смысле мой, а в том плане, что я мужу его покупала. Он не знает, что я здесь пишу, но все-таки поделюсь. Это ж и моя радость, скорее даже полностью мое счастье! Короче, я вот тоже читала отзывы, смотрела как и что и заказала это средство. А то мой муж уже весь отчаялся, уже много лет было давление 180 на 110! Таблетки разные пил от этого у него с желудком проблемы были, а давление все равно было высокое. Решали чего дальше делать. А тут в общем начал NORMIO пить и теперь ура! Никаких проблем у него, давление в норме, всегда бодр и активен!
  13. Павел Солонченко 10 дней назад
    Подтверждаю, этот препарат действительно помогает! Вылечил свою гипертонию всего за 4 недели! До этого 4 года мучался от постоянного давления, головных болей и т.д. Спасибо большое!
  14. Юлия Л 10 дней назад
    С трудом верится... но столько людей говорит что работает, должно работать. Я завтра начинаю!
  15. Оксана (Ульяновск) 8 дней назад
    Хочу постараться избавиться от гипертонии побыстрее, а главное как-нибудь попроще и безболезненно, посоветуйте что-нибудь.
  16. Дмитрий (врач Кардиолог) 8 дней назад
    Валерия, лучший вариант - обратиться к врачу! Но если нет времени на поход в поликлинику, подойдет и NORMIO, который уже советовали выше. В последнее время многим его назначаю, результаты очень хорошие! Выздоравливайте.
  17. Оксана (Ульяновск) 8 дней назад
    Спасибо огромное за ответ, заказала!
  18. Наташа 5 дней назад
    У мужа гипертония, бегаем по врачам вместе. Люблю его, жизнь отдам за него, но никак не могу облегчить его страдания. Ладно, теперь Вы со своей историей появились, для нас появилась надежда. А то уже все перепробовали.
  19. Валера () 5 дней назад
    Совсем недавно хотел снова обратиться к врачам, уже к хирургу решился пойти, кругленькую сумму приготовил, но сейчас мне это не нужно! 2 месяца – и я здоров, прикиньте. Так что, народ, не дурите, никакие таблетки не по-мо-гут! Только это природное средство, других способов я не знаю, да и не хочу знать уже



Adblock detector